
NORX
v3.0

Designers & Submitters:

Jean-Philippe Aumasson

Philipp Jovanovic

Samuel Neves

https://norx.io

https://github.com/norx

contact@norx.io

September 15, 2016

https://norx.io
https://github.com/norx
mailto:contact@norx.io

Contents

1 Changelog 3

2 Introduction 5

3 Specification 7

3.1 Parameters and Interface . 7

3.2 Instances . 8

3.3 Layout Overview . 9

3.4 The Permutation Fl
. 10

3.5 The NORX Mode . 11

3.5.1 High-level Structure . 11

3.5.2 Low-level Structure . 11

4 Security Goals 16

5 Features 17

5.1 List of Characteristics . 17

5.2 Recommended Parameter Sets . 18

5.3 Performance . 19

5.3.1 Generalities . 19

5.3.2 Software . 20

5.3.3 Hardware . 22

6 Design Rationale 24

6.1 The Parallel Duplex Construction . 24

6.2 The G Function . 24

6.3 The F Function . 26

6.4 Number of Rounds . 27

6.5 Selection of Constants . 27

6.5.1 Initialisation . 27

6.5.2 Domain Separation . 28

6.5.3 Rotation Offsets . 28

6.6 The Padding Rule . 30

6.7 Absence of Backdoors . 30

7 Security Analysis 31

7.1 Security Bounds for the Mode of Operation . 31

7.2 Differential Cryptanalysis . 31

7.2.1 Notation . 32

7.2.2 Differential Properties of G . 33

7.2.3 Simple Differentials . 35

7.2.4 Impossible Differentials . 36

1

7.3 Algebraic Cryptanalysis . 37

7.4 Other Attacks . 38

7.4.1 Fixed Points . 38

7.4.2 Slide Attacks . 38

7.4.3 Rotational Cryptanalysis . 39

8 Intellectual Property 40

9 Consent 41

10 Acknowledgements 42

Bibliography 43

A Test Vectors 47

A.1 Traces for F . 47

A.2 Full AEAD Computations . 47

B Datagrams 53

B.1 Fixed Parameters . 53

B.2 Variable Parameters . 53

C Addenda to Cryptanalysis 56

C.1 Diffusion Statistics for Inverse Round Functions 56

C.2 Visualisation of Differentials for G1 . 56

C.3 Impossible Differential Cryptanalysis . 56

D Nonce Misuse-Resistant NORX 59

2

1 Changelog

Changes from v2.0 to v3.0:

• Increased nonce size from 2w to 4w. Thus, NORX64 (NORX32) has now a nonce size of
256 (128) bit.

• Adapted datagram layouts to handle larger nonces, see Tables B.1 to B.4.

• The key is additionally XORed to the capacity at the following places:

– In initialisation after the state is transformed with Fl
(see Fig. 3.6, initialise, line 6).

– In finalisation between the two Fl
permutations and after the last one (see Fig. 3.6,

finalise, lines 3 and 5).

• The tag is extracted from the capacity instead of the rate part of the state (see Fig. 3.6,
finalise, line 6).

• In the parallel versions the lane counter is reduced to a single w-bit word. Moreover,
the counter is now XORed to every word of the rate si,0, . . . , si,11 instead of si,13 and si,14
(see Fig. 3.6, branch, line 11).

Changes from v1.1 to v2.0:

• Complete re-write of the spec aiming at more clarity and consistency.

• Renaming of variables:

type old new type old new

word size W w header H A
round number R l payload P M
parallelism degree D p trailer T Z
tag size |A| t tag A T

• New derivation scheme for initialisation constants, see §3.5.2.

• New arrangement of the elements in the initial state, see initialise line 3 in Fig. 3.6.

• Simplified integration of the parameters w, l, p, and t during initialisation, see initialise
lines 4–7 in Fig. 3.6.

• Increasing rate by 2w and decreasing capacity by the same amount. New rate+capacity:
NORX64: 768 + 256, NORX32: 384 + 128.

Changes from v1.0 to v1.1:

• Branching: Added a missing −1 in 0 ≤ i ≤ d|P|/re − 1 for the case p = 0.

3

• Branching: Added a note that the value bi/2wc, which is XORed to si,14, is only non-zero

for very large messages.

• Payload Processing: In the parallel processing modes p = 0 and p > 1 full plaintext
blocks Pi are added now directly to lane Li for processing without padding. Only the last

plaintext block Pn−1 is padded.

• Chapter 4: Added security bounds for the NORX mode of operations from [39].

• §5.1: Added a remark concerning extensibility of the design.

• §5.3: Added software performance measurements for the Apple A7 chip and visualisa-
tions for all platforms.

4

2 Introduction

The Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) [3]

invites cryptographers to submit authenticated encryption schemes supporting associated

data (AEAD) [48], that offer advantages over AES-GCM [32, 45] and are suitable for widespread

adoption.

NORX
1
is our candidate for CAESAR. It is a novel authenticated encryption scheme with

associated data supporting an arbitrary parallelism degree, based on ARX primitives yet not

usingmodular additions. NORX has a unique parallel architecture based on themonkeyDuplex

construction [20, 23], where the parallelism degree and tag size can be tuned arbitrarily. An

original domain separation scheme allows simple processing of header/payload/trailer data.

NORX was optimized for efficiency in both software and hardware, with a SIMD-friendly

core, almost byte-aligned rotations, no secret-dependent memory lookups, and only bitwise

operations. The NORX core is inspired by the ARX primitive ChaCha [17], however it replaces

integer addition with the approximation a⊕ b⊕ (a∧ b)� 12. This simplifies cryptanalysis and
improves hardware efficiency. Furthermore, NORX specifies a dedicated datagram to facilitate

interoperability and avoid users the trouble of defining custom encoding and signalling.

Notation. Hexadecimal numbers are denoted in typewriter style, for example ab = 171. A
word is either a 32-bit or 64-bit string, which depends on the context. Unless stated otherwise
we always use little-endian representation for integers, for example when converting data

streams into word arrays. Table 2.1 summarises basic notation used throughout the document.

Table 2.1: Notation used throughout the document

Symbol Meaning

ε The empty bitstring of length 0.
0n

The all-zero bitstring of length n.
|x| Length of bitstring x in bits.
|x|n Length of bitstring x in n-bit blocks.
x ‖ y Concatenation of bitstrings x and y.
hw(x) Hamming weight of bitstring x.
¬, ∧, ∨, ⊕ Bitwise negation, AND, OR and XOR.

x � n, x � n Left-/Right-shift of bitstring x by n bits.
x ≪ n, x ≫ n Left-/Right-rotation of bitstring x by n bits.
←− Variable assignment.

leftl(x) Truncation of bitstring x to its l left-most bits.
rightr(x) Truncation of bitstring x to its r right-most bits.

1
The name stems from “NO(T A)RX” and is pronounced like “norcks”.
2
Derived from the well-known identity a + b = (a⊕ b) + (a ∧ b)� 1 [14, 43].

5

Outline. Chapter 3 gives a complete specification of the NORX family of AEAD schemes.

Chapter 4 lists the security goals for confidentiality and integrity of the plaintext and for

integrity of associated data and public message numbers. Chapter 5 presents features

of NORX, justifies our parameter choices, and reports on performance measurements of

software implementations on 32- and 64-bit processors and presents preliminary results for
an hardware evaluation of an ASIC implementation. Chapter 6motivates design decisions

and Chapter 7 presents preliminary results from the cryptanalysis of various aspects of

NORX. Finally, we conclude with notes on the intellectual property, a consent of the CAESAR

competition, acknowledgements, references and appendices.

6

3 Specification

This section gives a complete specification of NORX and its proposed instances.

3.1 Parameters and Interface

A NORX instance is parameterised by

• a word size of w ∈ {32, 64} bits,

• a round number 1 ≤ l ≤ 63,

• a parallelism degree 0 ≤ p ≤ 255,

• a tag size of t ≤ 4w bits.

Encryption Mode

NORX encryption takes as input

• a key K of k = 4w bits,

• a nonce N of n = 4w bits,

• a tuple (A, M, Z) where

– A is a header,

– M is amessage,

– Z is a trailer/footer,

and where any of A, M, Z can be the empty string (that is, of length 0).

NORX encryption produces as output

• a ciphertext (or encrypted payload) C of the same size as M,

• an authentication tag T of t bits.

In summary, NORX encryption E is specified as

E : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with

E(K, N, A, M, Z) = (C, T)

where |M| = |C|.

7

Decryption Mode

NORX decryption takes as input

• a key K of k = 4w bits,

• a nonce N of n = 4w bits,

• a tuple (A, C, Z) where,

– A is a header,

– C is a ciphertext,

– Z is a trailer,

and where any of A, M, Z can be the empty string (that is, of length 0).

• an authentication tag T of t bits.

NORX decryption either returns a failure ⊥, upon failed verification of the tag, or produces a
plaintext M of the same size as C if the tag verification succeeds.

In summary, NORX decryption D is specified as

D : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × {0, 1}t → {0, 1}∗ ∪ {⊥}

with

D(K, N, A, C, Z, T) =

{
M if T = T′

⊥ if T 6= T′

where T denotes the received authentication tag, T′ the one computed on the recipient’s side
and |M| = |C|.

3.2 Instances

A NORX instance is a choice of values for the four parameters w, l, p, and t. Table 3.1
proposes five NORX instances for different use cases: 128- or 256-bit security, four or six

rounds, and a version with four-wise parallelism
1
. Table 3.1 also shows the corresponding

nonce and key sizes n and k and the priority order of the recommended parameter sets
from highest at the top to lowest at the bottom. The last column of Table 3.1 identifies

the prioritized list of targeted use cases (most important on the left) as specified in https:
//groups.google.com/forum/#!topic/crypto-competitions/DLv193SPSDc.

We set the default tag size t for a given word size w to t = 4w, i.e. for w = 32 we get t = 128
and for w = 64 we get t = 256. A detailed discussion on the parameter combinations can be
found in §5.2.

A NORX instance is denoted by NORXw-l-p-t, where w, l, p, and t are the parameters of the
instance, see §3.1. If the default tag size is used, i.e. if t = 4w, the notation for an instance is
shortened to NORXw-l-p. So for example, NORX64-6-1 has (w, l, p, t) = (64, 6, 1, 256).

1
For low-end systems we refer to NORX8 and NORX16 [12] which target security levels of 80- and 96-bit.

8

https://groups.google.com/forum/#!topic/crypto-competitions/DLv193SPSDc
https://groups.google.com/forum/#!topic/crypto-competitions/DLv193SPSDc

Table 3.1: NORX instances

Nr. w l p t k n Use Cases

1. 64 4 1 256 256 256 2, 1
2. 32 4 1 128 128 128 1, 2
3. 64 6 1 256 256 256 2, 1
4. 32 6 1 128 128 128 1, 2
5. 64 4 4 256 256 256 2

3.3 Layout Overview

NORX uses the monkeyDuplex construction [20, 23] as a basis. Certain configurations of the

mode allow to process the payload in parallel.

For the parallel mode the number i of parallel encryption lanes Li is controlled by the pa-

rameter 0 ≤ p ≤ 255. For the value p = 1, the layout of NORX corresponds to a standard
(sequential) duplex construction, see Fig. 3.1. For p > 1, the number of lanes Li is bounded

by the latter value, e.g. for p = 2 see Fig. 3.2. If p = 0, the number of lanes Li is bounded

by the size of the payload. In that case, the layout of NORX is similar to that of the PPAE

construction [27].

init(K,N,w, l, p, t)

0

0

r

c
Fl Fl Fl Fl Fl Fl Fl Fl Fl

01 01 02 02 04 04 08

A0 Aa−1 M0 Mm−1C0 Cm−1 Z0 Zz−1

T

K K K

\
r

\
c

\
t

Figure 3.1: Layout of standard NORX (p = 1)

init(K,N,w, l, p, t)

0

0

r

c
Fl Fl Fl Fl

Fl Fl Fl

Fl Fl Fl

Fl Fl Fl Fl

01 01 10

id0

id1

02 02

02 02

20

20

04 04 08

A0 Aa−1

M0 Mm−2

M1 Mm−1

C0 Cm−2

C1 Cm−1

Z0 Zz−1

T

K K K

\
r

\
c

\
t

Figure 3.2: Layout of NORX with parallel encryption (p = 2)

The core algorithm F of NORX is a permutation of b = r + c bits, where b is called the width,
r the rate (or block length), and c the capacity. We call F a round and Fl

denotes its l-fold
iteration. The organisation of the internal state S of NORX is as follows:

9

w b r c

32 512 384 128
64 1024 768 256

The state is viewed as a concatenation of 16 words, i.e. S = s0 ‖ · · · ‖ s15, where s0, . . . , s11 are

called the rate words (where data blocks are injected) s12, . . . , s15 are called the capacity words

(which remain untouched). Conceptually, the 16 state words are arranged in a 4× 4matrix:

S =

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

3.4 The Permutation Fl

The complete pseudocode for the NORX core permutation Fl
is given in Fig. 3.4. A single

NORX round F processes the state S by first transforming its columns with

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

and then transforming its diagonals with

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

Those two operations are called column step and diagonal step, as in BLAKE2 [13], and will be

denoted by col and diag, respectively. An illustration of these operations is shown in Fig. 3.3.

G

G

G

G

s0

s4

s8

s12

s1

s5

s9

s13

s2

s6

s10

s14

s3

s7

s11

s15 s12

s8

s13

s4

s9

s14

s0

s5

s10

s15

s1

s6

s11

s2

s7

s3G

G

G

G

Figure 3.3: Column step and diagonal step of F

The G function uses cyclic rotations≫ and a non-linear operation H interchangeably to update
its four input words a, b, c and d. The rotation offsets r0, r1, r2, and r3 for the cyclic rotations

of 32- and 64-bit NORX are specified in Table 3.2.

10

Table 3.2: Rotation offsets for 32- and 64-bit NORX

w r0 r1 r2 r3

32 8 11 16 31
64 8 19 40 63

Algorithm: Fl(S)
1. for i ∈ {0, . . . , l − 1} do
2. S← diag(col(S))
3. end

4. return S

Algorithm: G(a, b, c, d)
1. a← H(a, b)
2. d← (a⊕ d) ≫ r0
3. c← H(c, d)
4. b← (b⊕ c) ≫ r1
5. a← H(a, b)
6. d← (a⊕ d) ≫ r2
7. c← H(c, d)
8. b← (b⊕ c) ≫ r3
9. return a, b, c, d

Algorithm: col(S)
1. (s0, s4, s8, s12)← G(s0, s4, s8, s12)
2. (s1, s5, s9, s13)← G(s1, s5, s9, s13)
3. (s2, s6, s10, s14)← G(s2, s6, s10, s14)
4. (s3, s7, s11, s15)← G(s3, s7, s11, s15)
5. return S

Algorithm: diag(S)
1. (s0, s5, s10, s15)← G(s0, s5, s10, s15)
2. (s1, s6, s11, s12)← G(s1, s6, s11, s12)
3. (s2, s7, s8, s13)← G(s2, s7, s8, s13)
4. (s3, s4, s9, s14)← G(s3, s4, s9, s14)
5. return S

Algorithm: H(x, y)
1. return (x⊕ y)⊕ ((x ∧ y)� 1)

Figure 3.4: The NORX permutation Fl

3.5 The NORXMode

The NORX mode is divided into a high-level and a low-level interface discussed in §§3.5.1

and 3.5.2, respectively. The high-level interface consists of only two functions: AEADEnc and
AEADDec. These provide functionality for encryption and authentication of a message on
the one hand and decryption and verification of an encrypted payload on the other. Both

functions support processing of associated data. The low-level interface defines the concrete

implementation of padding, domain separation, absorption or encryption of data block

sequences, tag generation, etc.

3.5.1 High-level Structure

The two high-level interface functions AEADEnc and AEADDec are depicted in Fig. 3.5

3.5.2 Low-level Structure

The low-level functions of NORX are depicted in Fig. 3.6. Before going into the details of those

methods, we first introduce the mechanisms for padding and domain separation which are

required later on.

11

Algorithm: AEADEnc(K, N, A, M, Z)
1. S← initialise(K, N)
2. S← absorb(S, A, 01)
3. S← branch(S, |M|, 10)
4. S, C ← encrypt(S, M, 02)
5. S← merge(S, |M|, 20)
6. S← absorb(S, Z, 04)
7. S, T ← finalise(S, K, 08)
8. return C, T

Algorithm: AEADDec(K, N, A, C, Z, T)
1. S← initialise(K, N)
2. S← absorb(S, A, 01)
3. S← branch(S, |C|, 10)
4. S, M← decrypt(S, C, 02)
5. S← merge(S, |C|, 20)
6. S← absorb(S, Z, 04)
7. S, T′ ← finalise(S, K, 08)
8. if T = T′ then return M else return ⊥ end

Figure 3.5: High-level interface functions of the standard NORX mode

Padding

NORX adopts the so-calledmulti-rate padding [23]. This padding rule is defined by the map

padr : X 7−→ X ‖ 10u1

where X is a bitstring and u = (−|X| − 2) mod r. If r and |X| are divisible by 8 and X is
viewed as a sequence of bytes, then the multi-rate padding can be written as

padr :

{
X 7−→ X ‖ 01 ‖ 00u ‖ 80 if u > 0
X 7−→ X ‖ 81 if u = 0

where u = (−|X|8 − 2) mod (r/8).

Domain Separation

NORX has a very simple and lightweight domain separation mechanism: different domain sep-

aration constants are XORed to the least significant byte of s15 before the state is transformed

by Fl
to distinguish different phases of the algorithm. Table 3.3 gives the specification of those

constants and Figs. 3.1 and 3.2 illustrate their integration into the state of NORX. Figs. 3.5

and 3.6 show their concrete usage.

Table 3.3: Domain separation constants

header payload trailer tag branching merging

01 02 04 08 10 20

Initialisation

The method initialise sets up the 16w-bit internal state S = (s0, . . . , s15) of NORX by processing
a 4w-bit key K = k0 ‖ k1 ‖ k2 ‖ k3, a 4w-bit nonce N = n0 ‖ n1 ‖ n2 ‖ n3, the instance

parameters w, l, p, and t and some initialisation constants. These constants are given in
Table 3.4 and can be derived by

(u0, . . . , u15) = F2(0, . . . , 15)

12

Algorithm: initialise(K, N)

1. k0 ‖ k1 ‖ k2 ‖ k3 ← K, s.t. |ki| = w
2. n0 ‖ n1 ‖ n2 ‖ n3 ← N, s.t. |ni| = w
3. S← (n0, n1, n2, n3, k0, k1, k2, k3, u8, u9, u10, u11, u12, u13, u14, u15)
4. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (w, l, p, t)
5. S← Fl(S)
6. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (k0, k1, k2, k3)
7. return S

Algorithm: encrypt(S, M, v)
1. C ← ε
2. M0 ‖ · · · ‖ Mm−1 ← M, s.t. |Mi| = r, 0 ≤ |Mm−1| < r
3. if |M| > 0 then
4. for i ∈ {0, . . . , m− 2} do
5. j← i mod |S|b
6. sj,15 ← sj,15 ⊕ v
7. Sj ← Fl(Sj)

8. Ci ← leftr(Sj)⊕Mi

9. Sj ← Ci ‖ rightc(Sj)

10. end

11. j← (m− 1) mod |S|b
12. sj,15 ← sj,15 ⊕ v
13. Sj ← Fl(Sj)

14. Cm−1 ← left|Mm−1|(Sj)⊕Mm−1

15. Sj ← Sj ⊕ (padr(Mm−1) ‖ 0c)

16. C ← C0 ‖ · · · ‖ Cm−1
17. end

18. return S, C

Algorithm: decrypt(S, C, v)
1. M← ε
2. C0 ‖ · · · ‖ Cm−1 ← C s.t. |Ci| = r, 0 ≤ |Cm−1| < r
3. if |C| > 0 then
4. for i ∈ {0, . . . , m− 2} do
5. j← i mod |S|b
6. sj,15 ← sj,15 ⊕ v
7. Sj ← Fl(Sj)

8. Mi ← leftr(Sj)⊕ Ci

9. Sj ← Ci ‖ rightc(Sj)

10. end

11. j← (m− 1) mod |S|b
12. sj,15 ← sj,15 ⊕ v
13. Sj ← Fl(Sj)

14. Mm−1 ← left|Cm−1|(Sj)⊕ Cm−1

15. Sj ← Sj ⊕ (padr(Mm−1) ‖ 0c)

16. M← M0 ‖ · · · ‖ Mm−1
17. end

18. return S, M

Algorithm: absorb(S, X, v)
1. X0 ‖ · · · ‖ Xm−1 ← X, s.t. |Xi| = r, 0 ≤ |Xm−1| < r
2. if |X| > 0 then
3. for i ∈ {0, . . . , m− 2} do
4. s15 ← s15 ⊕ v
5. S← Fl(S)
6. S← S⊕ (Xi ‖ 0c)
7. end

8. s15 ← s15 ⊕ v
9. S← Fl(S)

10. S← S⊕ (padr(Xm−1) ‖ 0c)
11. end

12. return S

Algorithm: branch(S, m, v)
1. S← 0b

2. if p 6= 1 and m > 0 then
3. s← p
4. if p = 0 then
5. s← dm/re
6. end

7. S = (S0, . . . , Ss−1)← (0b, . . . , 0b)
8. s15 ← s15 ⊕ v
9. S← Fl(S)

10. for i ∈ {0, . . . , s− 1} do
11. Si ← S⊕ (i, i, i, i, i, i, i, i, i, i, i, i, 0, 0, 0, 0)
12. end

13. else

14. S← S
15. end

16. return S

Algorithm: merge(S, m, v)
1. S← 0b

2. if p 6= 1 and m > 0 then
3. for i ∈ {0, . . . , |S|b − 1} do
4. si,15 ← si,15 ⊕ v
5. Si ← Fl(Si)

6. S← S⊕ Si
7. end

8. else

9. S← S
10. end

11. return S

Algorithm: finalise(S, K, v)
1. s15 ← s15 ⊕ v
2. S← Fl(S)
3. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (k0, k1, k2, k3)

4. S← Fl(S)
5. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (k0, k1, k2, k3)
6. T ← rightt(S)
7. return S, T

Figure 3.6: Low-level interface functions of the NORX mode

13

Table 3.4: Initialisation constants

w 32 64 w 32 64

u0 0454EDAB E4D324772B91DF79 u8 A3D8D930 B15E641748DE5E6B
u1 AC6851CC 3AEC9ABAAEB02CCB u9 3FA8B72C AA95E955E10F8410
u2 B707322F 9DFBA13DB4289311 u10 ED84EB49 28D1034441A9DD40
u3 A0C7C90D EF9EB4BF5A97F2C8 u11 EDCA4787 7F31BBF964E93BF5
u4 99AB09AC 3F466E92C1532034 u12 335463EB B5E9E22493DFFB96
u5 A643466D E6E986626CC405C1 u13 F994220B B980C852479FAFBD
u6 21C22362 ACE40F3B549184E1 u14 BE0BF5C9 DA24516BF55EAFD4
u7 1230C950 D9CFD35762614477 u15 D7C49104 86026AE8536F1501

which allows on-the-fly computation if necessary. Note, however, that only u8, . . . , u15 are

actually used in initialise.

Data Absorption

The method absorb takes an arbitrary long bitstring X as input and absorbs it in blocks of r
bits into the internal state thereby ensuring authenticity of X. If the last block is smaller then
r bits, it is extended to the block size through padr. For domain separation the constant v is
used. Data absorption is skipped entirely in case the input has length 0, i.e. if X corresponds
to the empty bitstring ε.

In NORX the function absorb is used for authenticating associated data in the form of header
data A using domain separation constant v = 01 and/or trailer data Z using domain separa-
tion constant v = 04. Refer to the high-level interface in Fig. 3.5 to see where and how absorb
is used concretely in NORX.

Branching

If the parallelism degree p 6= 1 then branch is used to prepare parallel payload processing.
branch is skipped entirely if either p = 1 or |M| = 0. The state S is extended to a multi-state
vector S having either p elements if p > 1 or d|M|re elements if p = 0. Note that in order
to ensure that each lane produces a unique bitstream for encryption, a w-bit lane number
i is integrated into state copy Si (XORed to the rate words si,0, . . . , si,11) immediately after

branching.

Due to the above lane number being a single w-bit word, the number of lanes is limited
to 2w

. This implies that when p = 0, the maximum message size is 2wr/8 bytes, which is
approximately 236

(≈ 64GiB) for NORX32 and 270
(≈ 1024EiB) for NORX64.

Data Encryption and Decryption

The method encrypt (decrypt) takes an arbitrary long bitstring M (C) as input and encrypts
(decrypts) it thereby producing the encrypted (decrypted) payload C (M). Since M is also

absorbed into the state S, its authenticity is ensured as well. As in absorb, data is processed
in r-bit blocks and the last block is padded using padr. Note that in the latter case only a

truncated data block of the same size as the unpadded input block is extracted such that

|M| = |C| holds. The constant v = 02 is used for domain separation.

14

The different cases for p are handled as follows. For p = 1 the NORX mode corresponds
to a regular sequential sponge construction and no special steps have to be taken for data

encryption or decryption. For p > 1 a fixed number of p parallel lanes is available for data
processing. Data blocks are rotated in a round-robin fashion across the states by assigning

the i-th data block to state i mod p. In the last case, if p = 0, each data block is processed on
its own separate lane.

Merging

Themerge function is only executed if p 6= 1 and |M| > 0. After parallel-processing all payload
data blocks, the states Si are merged back into a single state S. The domain separation
constant for merge is v = 20.

Finalisation

The finalise function generates an authentication tag T by first injecting the domain separation
constant v = 08 then transforming S twice with the permutation Fl

interleaved by two key

additions to the capacity, and finally extracting the t rightmost bits (=capacity) from S which
are returned as the tag T.

Tag Verification

Note that tag verification is not listed explicitly among the low-level interface functions in

Fig. 3.6 but rather in Fig. 3.5, see the last step of AEADDec.

Tag verification consists of comparing the received tag T to the generated tag T′. If T = T′, tag
verification succeeds; otherwise tag verification fails, the decrypted payload is discarded and

an error ⊥ is returned.
Implementations of tag verification should satisfy the following requirements:

• Tag verification should not leak information on the (relative) values of the strings com-
pared. In particular tag verification should be implemented in constant time, so that a

comparison of identical strings take the same time as a comparison of distinct strings.

• The decrypted payload should not be returned to the user if tag verification fails. Ideally,
extracted bytes should be securely erased from any temporary memory if tag verification

fails.

15

4 Security Goals

We expect NORX with l ≥ 4 rounds to provide the maximum security for any AEAD scheme
with the same interface (input and output types and lengths). The following requirements

should be satisfied in order to use NORX securely:

1. Unique nonces. Each key and nonce pair should not be used to process more than one

message.

2. Abort on verification failure. If the tag verification fails, only an error is returned. In

particular, the decrypted plaintext and the wrong authentication tag must not be given

as an output and should be erased from memory in a safe way.

We do not make any claim regarding attackers using “related keys”, “known keys”, “chosen

keys”, etc. We also exclude from the claims below models where information is “leaked” on

the internal state or key.

The security of NORX is limited by the key length (128 or 256 bits) and by the tag length (128 or
256 bits). Plaintext confidentiality should thus have the order of 128 or 256 bits of security. The
same level of security should hold for integrity of the plaintext or of associated data (based

on the fact that an attacker trying 2n
tags will succeed with probability 2n−256

, n < 256). In
particular, recovery of a k-bit NORX key should require resources (“computations”, energy,
etc.) comparable to those required to recover the key of an ideal k-bit key cipher. Table 4.1
summarizes the security goals of NORX.

Table 4.1: Overview on the security levels (in bits)

security goal NORX32 NORX64

plaintext confidentiality 128 256
plaintext integrity 128 256
associated data integrity 128 256
public message number integrity 128 256

Note that NORX restricts the number of messages processed with a given key: in [19] the

usage exponent e is defined as the value such that the implementation imposes an upper limit
of 2e

uses to a given key. In NORX we set it to e64 = 128 for 64-bit and e32 = 64 for 32-bit.

16

5 Features

NORX was designed for users, provides several features desirable for practical applications

and offers a couple of advantages over AES-GCM [45]. First we list these characteristics in

detail, then give a justification of our recommended parameter sets and finally present our

performance results.

5.1 List of Characteristics

• High security. NORX supports 128- and 256-bit keys and authentication tags of arbitrary
size, thanks to its duplex construction. The core permutation of NORX was designed

and evaluated to be cryptographically strong. The minimal number of 8 rounds for
initialisation / finalisation (i.e. 16 steps consisting of 8 column and 8 diagonal steps
interleaved with each other) and of 4 rounds (i.e. 8 steps consisting of 4 column and 4
diagonal steps interleaved with each other) for the data processing part ensure a high

security margin against cryptanalytic attacks. Large internal states of 512 and 1024 bits
and the duplex construction offer protection against generic attacks.

• Efficiency. NORX was designed with 64-bit processors in mind, but is also compatible
with smaller architectures like 8- to 32-bit platforms. Software implementations of
NORX are able to take advantage of multi-core processors, due to the parallel duplex

construction, and specialised instruction sets like AVX / AVX2 or NEON. Moreover, state

sizes of 512 and 1024 bits make NORX very cache-friendly. Hardware implementations
benefit from hardware-friendly operations, next to the arbitrary parallelism degree for

payload processing, which results in highly competitive hardware performance of NORX.

• Simplicity. The core algorithm iterates a simple round function and can be implemented
by translating our pseudocode into the programming language used: NORX requires no

SBoxes, no Galois field operations, and no integer arithmetic; AND, XOR, and shifts are the
only instructions required. This simplifies cryptanalysis and the task of implementing

the cipher.

• High key agility. NORX requires no key expansion when setting up a new key, in
contrast to many block-cipher based schemes, like AES-GCM. Switching the secret key is

therefore very cheap. As an additional benefit, there are also no hidden costs of loading

precomputed expanded keys from DRAM into L1 cache.

• Adjustable tag sizes. The NORX family uses a default tag size of 4w bits for our
proposed instances. Thanks to the duplex construction, tag sizes can be easily adapted

to the demands of any given application.

• Simple integration. NORX can be easily integrated into a protocol stack, as it supports
flexible processing of arbitrary datagrams: any header and trailer are authenticated

(and left in clear) and the payload is both encrypted and authenticated.

17

• Interoperability. Dedicated datagrams encode parameters of the cipher and encapsu-

late the protected data. This aims to increase interoperability across implementations.

• Single pass. Encryption and decryption of data is done in a single pass of the algorithm.

• Online. NORX supports encryption of data streams, i.e. the size of processed data
needs not to be known in advance.

• High data processing volume. NORX allows to process very large data sizes from
a single key-nonce pair. The usage exponent (see Chapter 4) theoretically limits the

number of calls to the core permutation to values of 264
(NORX32) and 2128

(NORX64).
This translates to data sizes, which are orders of magnitude beyond everything relevant

for current real-world applications. Especially, these values are a lot higher than the

maximum of 232
calls to the authenticated encryption function of AES-GCM, which could

be easily reached already nowadays in practical applications.

• Minimal overhead. Payload encryption is non-expanding, i.e. the ciphertext has the
same length as the plaintext. The authentication tag, has a length of 16 or 32 bytes
depending on the concrete instance of NORX.

• Robustness against timing attacks. By avoiding data-dependent table look-ups, like
SBoxes, and integer additions, the goal to harden soft- and hardware implementations

of NORX against timing attacks should be comparably easy to achieve.

• Moderate misuse resistance. NORX retains its security on nonce reuse as long as
it can be guaranteed that header data is unique

1
. For comparison, nonce reuse in

AES-GCM is a major security issue, allowing an attacker to recover the secret key [38].

• Autonomy. NORX requires no external primitive.

• Diversity. The cipher does not depend on AES instructions, thereby adding to the
diversity among cryptographic algorithms.

• Extensibility. Thanks to the duplex construction and a simple, yet powerful domain sep-
aration scheme, NORX can be easily extended to support additional features, like secret

message numbers, sessions, or forward secrecy without losing its security guarantees.

5.2 Recommended Parameter Sets

We consider NORX32-4-1 and NORX64-4-1 as the standard instances for the respective word
sizes of 32 and 64 bit. These configurations offer a good balance between performance and
security. We recommend NORX32-4-1 for low resource applications on 8- to 32-bit platforms
and NORX64-4-1 for software implementations on modern 64-bit CPUs or standard hardware
implementations. Applications that require a higher security margin and where performance

has less priority are advised to use the instances NORX32-6-1 and NORX64-6-1.

For use cases where very high data throughput is necessary, we recommend NORX64-4-4,
which allows payload encryption on four parallel lanes, thus enabling very high data processing

1
Nevertheless, the designers discourage this approach, and recommend that nonce freshness should be

ensured by all means.

18

speeds. Finally, we advise hardware implementers not to realise multiple instances of NORX

with different parameter combinations at the same time. This holds especially for different

values of the parallelism degree p. An implementation should rather be optimised for one set
of parameters to gain higher efficiency.

5.3 Performance

NORX was designed to perform well across both software and hardware. This section details

our implementations and performance results.

5.3.1 Generalities

In this part we analyse some general performance-relevant properties of NORX, like number

of operations in G and Fl
, parallelism degree, and upper bounds for the speed of NORX on

different platforms.

Number of Operations

Table 5.1 shows the number of operations required for the NORX core functions. We omit the

overhead of initialisation, integration of parameters, domain separation constants, padding

messages, and so on, as those costs are negligible compared to that of the core permutation

Fl
.

Table 5.1: Overview on the number of operations of the NORX functions

function #XOR #AND #shifts #rotations total

G 12 4 4 4 24
F 96 32 32 32 192
F4 384 128 128 128 768
F6 576 192 192 192 1152
F8 768 256 256 256 1536
F12 1152 384 384 384 2304

Memory

NORX32 and NORX64 require at least 16 bytes to be stored in ROM to generate the initialisation
constants

2
. To store all initialisation constants 32 and 64 bytes of ROM are necessary.

Processing a message in NORX requires enough RAM to store the internal state, i.e., 64 bytes
in NORX32 and 128 bytes in NORX64. The data being processed need not be in memory for
more than 1 byte at a time. In practice, however, it is preferable to process blocks of 48 (resp.
96) bytes at a time.

2
Note that the 8 constants can be generated on-the-fly from 0, . . . , 15, see §3.5.2.

19

Parallelism

The core permutation F of NORX has a natural parallelism of 4 independent G applications.
Additionally, NORX allows for greater parallelism levels using multiple lanes. Using the p = 0
mode, see Line 7, the internal parallelism level of NORX is effectively unbounded for long

enough messages.

5.3.2 Software

NORX is easily implemented for 32-bit and 64-bit processors, as it works on 32- and 64-bit
words and uses only word-based operations (XOR, AND, shifts and rotations). The specification
can directly be translated to code and requires no specific technique such as look-up tables

or bitslicing. The core of NORX essentially consists of repeated usage of the G function, which
allows simple and compact implementations (e.g., by having only one copy of the G code).

Furthermore, constant-time implementations of NORX are straightforward to write, due to

the absence of secret-dependent instructions or branchings.

Bit Interleaving

While NORX’s lack of integer addition avoids dealing with carry chains, the implementer

may still have to perform full-word rotations and shifts in words wider than the natural CPU

word size. In 8-bit processors, some of this burden is alleviated by 2 out of 4 rotations being
multiples of 8. However, this is only a half-measure.

Instead, the implementer can employ the bit interleaving technique presented in [24]. This

technique consists of splitting an n-bit word w into s = n/m m-bit words bi, with bij = wi+jn/m.

A rotation by r in this representation can be performed by rotating each bi by br/wc + 1
if i + r mod m < r, br/wc otherwise, and moving bi to bi+r mod m. Rotations by 1 or n − 1
are particularly attractive, since they result in a single m-bit rotation. For example, consider
implementing NORX64 on a 32-bit CPU. Each state word w will be split into the 2 words b0 and

b1. To rotate by r:

• If r mod 2 = 0, rotate both b0 and b1 by br/2c;

• If r mod 2 = 1, rotate b1 by br/2c+ 1, b0 by br/2c, and swap them.

Conversion between representations can be performed in logarithmic time using bit “zip” and

“unzip” operations [8].

Avoiding Latency

One drawback of G is that it has little instruction parallelism. In architectures where one is
limited by the latency of the G function, an implementer can trade a few extra instructions by

20

reduced latency:

t0 ←− a⊕ b
t1 ←− a ∧ b
t1 ←− t1 � 1
a ←− t0 ⊕ t1

d ←− d⊕ t0

d ←− d⊕ t1

d ←− d ≫ r0

This tweak saves up to 1 cycle per instruction sequence, of which there are 4 per G, at the
cost of 1 extra instruction (cf. Fig. 5.1). In a sufficiently parallel architecture, this can save
at least 4 × 2 × l cycles, which translates to 6.4l/w cycles per byte saved overall. In our
measurements, this translated to a performance improvement of NORX from 0.4 to 0.7 cycles
per byte, depending on the target architecture, word size, and number of rounds.

a

b

d

∧ � 1

≫ 8

a

d

(a) Naïve implementation of the G instruction sequence

a

b

d

∧ � 1

≫ 8

a

d

(b) Latency-oriented version of the G instruction sequence

Figure 5.1: Improving the latency of G.

Vectorization

NORX lends itself quite well to implementations taking advantage of SIMD extensions present

in modern processors, such as AVX or NEON.

The typical vectorized implementation of NORX, when p = 1, works in full rows of the 4× 4
state, and computes whole column and diagonal steps of F in parallel.

Results

We wrote portable C reference implementations for both NORX64 and NORX32, as well as
optimized versions for CPUs supporting AVX and AVX2 and for NEON-enabled ARMs. Table 5.2

21

shows speed measurements on various platforms for messages with varying lengths. The

listed CPU frequencies are nominal ones, i.e. without dynamic overclocking features like Turbo

Boost, which improves the accuracy of measurements. Furthermore we listed only those

platform-compiler combinations that achieved the highest speeds. Unless stated otherwise

we used the compiler flags

-O3 -march=native -std=c89 -Wall -pedantic -Wno-long-long

The top speed of NORX (for p = 1), in terms of bytes per second, was achieved by an AVX2
implementation of NORX64-4-1 on a Haswell CPU, listed in Table 5.2. It achieves a throughput
of about 1.75GiBps (1.99 cycles per byte at 3.5GHz). The overhead for short messages
(≤ 64 bytes) is mainly due to the additional initialisation and finalisation rounds (see Fig. 3.1).
However the cost per byte quickly decreases, and stabilizes for messages larger than about

1KiB.

Note that the speed between reference and optimized implementations differs by a factor of

less than 2, suggesting that straightforward and portable implementations will provide suffi-
cient performance in most applications. Such consistent performance reduces development

costs and improves interoperability.

5.3.3 Hardware

Hardware architectures of NORX are efficient and easy to design from the specification: vertical

and parallel folding are naturally derived from the iterated and parallel structure of NORX.

The cipher benefits from the hardware-friendliness of the function G, which requires only
bitwise logical AND, XOR, and bit shifts, and the iterated usage of G inside the core permutation
of NORX.

A hardware architecture was designed, supporting parameters w ∈ {32, 64}, l ∈ {2, . . . , 16}
and p = 1. It was synthesized with the Synopsys Design Compiler for an ASIC using 180nm
UMC technology. The implementation was targeted at high data throughput. The require-

ments in area amounted to about 62 kGE. Simulations for NORX64-4-1 report a throughput of
about 10Gbps (1.2GiBps), at a frequency of 125MHz.

A more thorough evaluation of all hardware aspects of NORX is planned for the future. Due

to the similarity of NORX to ChaCha and the fact that NORX has only little overhead compared

to a blank stream cipher, we expect results similar to those of Chacha as presented in [37].

22

Table 5.2: Software performance of NORX in cycles per byte

data length [byte] long 4096 1536 576 64 8

Samsung Exynos 4412 Prime (Cortex-A9) at 1.7GHz

NORX32-4-1
Ref 16.72 18.03 20.52 27.92 109.48 771.88

NEON 9.27 10.20 11.95 16.46 72.30 521.00

NORX64-4-1
Ref 15.60 17.91 22.02 32.42 148.55 1177.12

NEON 7.13 8.40 10.61 16.25 82.12 648.88

BeagleBone Black Rev B (Cortex-A8) at 1.0GHz

NORX32-4-1
Ref 16.66 17.90 20.28 26.49 102.34 708.00

NEON 9.49 10.52 12.36 17.92 75.62 550.12

NORX64-4-1
Ref 17.24 19.81 24.34 35.73 164.86 1317.50

NEON 7.00 8.35 10.67 16.44 85.66 680.00

Intel Core i7-2630QM at 2.0 GHz

NORX64-6-1
Ref 6.33 7.02 8.24 13.96 70.62 607.50

AVX 4.02 4.42 5.14 6.90 63.75 204.00

NORX64-4-1
Ref 4.83 5, 35 6.30 8.66 50.00 400.62

AVX 2.68 2.96 3.45 4.66 17.18 137.5

Intel Core i7-3667U at 2.0 GHz

NORX64-6-1
Ref 8.15 9.01 10.49 14.15 53.20 425.62

AVX 5.04 5.56 6.45 8.65 32.19 255.00

NORX64-4-1
Ref 5.58 6, 17 7.22 9.82 38.05 303.75

AVX 3.37 3.72 4.35 5.84 22.11 174.38

Intel Core i7-4770K at 3.5 GHz

NORX64-6-1
Ref 5.37 5.94 6.92 9.40 36.44 292.00

AVX2 2.98 3.29 3.84 5.17 19.00 153.00

NORX64-4-1
Ref 3.98 4.39 5.11 6.97 27.19 217.00

AVX2 1.99 2.20 2.58 3.49 12.94 104.50

23

6 Design Rationale

In this chapter we motivate the design choices made in NORX. We pursue a top-down ap-

proach, starting with the general layout and going into the details of the cipher’s components

in the later sections.

6.1 The Parallel Duplex Construction

The layout of NORX is based on the monkeyDuplex construction [20, 23], but enhanced by the

capability of parallel payload processing on multiple lanes (cf. Figs. 3.1 and 3.2). The parallel

duplex construction is similar to the tree-hashing mode for sponge functions [22]. It allows

NORX to take advantage of multi-core processors and enables high-throughput hardware

implementations. Associated data can be authenticated as header and/or trailer data but

only on a single lane. We felt that it is not worth the effort to enable processing of A and Z in
parallel, as they are usually rather short. The number of encryption lanes is controlled by the

parallelism degree 0 ≤ p ≤ 255, which is a fixed instance parameter. Hence two instances
with distinct p values cannot decrypt data from each other. Obviously the same holds for
differing w and l values.

To ensure that the payload blocks on parallel lanes are encrypted with distinct key streams,

we use the branching phase to include an id into each of the parallel lanes. For NORX the id is

a simple counter. Once the parallel payload processing is finished, the states are re-combined

in the merging phase and NORX advances to the processing of the trailer (if present) or

generation of the authentication tag.

There does not exist a formal proof of security for the parallel duplex construction yet. Note

that the most problematic step could be the merging phase for p 6= 1, due to the fact that
(multi-)collisions could occur. However, we expect that the construction is safe in case of a

nonce-respecting adversary. We will try to hand in the proof at a later point of time.

6.2 The G Function

The G function of NORX is inspired by the quarter-round function of the stream cipher
ChaCha [17], which itself is an advancement of the quarter-round function of the eSTREAM

finalist Salsa20 [1, 18]. Variants of ChaCha’s quarter-round function can be found for example

in the SHA-3 finalist BLAKE [2, 11] and its successor BLAKE2 [13].

Overview

One of the main goals for NORX was to design a core primitive, which does not rely on integer

addition to introduce non-linearity. Instead it should use exclusively more hardware-friendly

bitwise logic operations like NOT, AND, OR, or XOR and bit-shifts. Fig. 6.1 shows how the G
function of NORX transforms an input (a, b, c, d) compared to the quarter-round function of

24

ChaCha . The rotation offsets for NORX are specified in Table 3.2. The offsets of ChaCha are

(s0, s1, s2, s3) = (16, 12, 8, 7) for 32-bit and (s0, s1, s2, s3) = (32, 24, 16, 63) for 64-bit.1

a ←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
a ←− a + b

d ←− (a⊕ d) ≫ r0 d ←− (a⊕ d) ≫ s0

c ←− (c⊕ d)⊕
(
(c ∧ d)� 1

)
c ←− c + d

b ←− (b⊕ c) ≫ r1 b ←− (b⊕ c) ≫ s1

a ←− (a⊕ b)⊕
(
(a ∧ b)� 1

)
a ←− a + b

d ←− (a⊕ d) ≫ r2 d ←− (a⊕ d) ≫ s2

c ←− (c⊕ d)⊕
(
(c ∧ d)� 1

)
c ←− c + d

b ←− (b⊕ c) ≫ r3 b ←− (b⊕ c) ≫ s3

Figure 6.1: Comparison of NORX (left) and ChaCha (right) core functions

In NORX the integer additions is replaced by the following expression

x ←− (x⊕ y)⊕
(
(x ∧ y)� 1

)
which uses bitwise logical AND to introduce non-linearity. It mimics integer addition of two bit
strings x and y with a 1-bit carry propagation and thus provides, in addition to non-linearity,
also a slight diffusion of bits. In conformity with the main design principle of NORX, we tried

to make the non-linear operation as simple as possible in order to simplify cryptanalysis and

to reduce the risk of overlooking potential security weaknesses. Moving to simple bitwise

logical operations facilitates hardware implementations. One way to realise G as a circuit is
depicted in Fig. 6.2.

a

b

c

d

a

b

c

d

∧ � 1

≫ r0

∧ � 1

≫ r1

∧ � 1

≫ r2

∧ � 1

≫ r3

Figure 6.2: The G circuit

Bijectivity

The only expression in G which is not obviously invertible at a first glance, is the non-linear
operation

z = (x⊕ y)⊕ ((x ∧ y)� 1)

1
The original ChaCha stream cipher is defined for 32-bit words. For the 64-bit version we used the rotation

offsets (32, 24, 16, 63) from the BLAKE2 specification [13].

25

with n-bit words x, y and z. In order to proof bijectivity of the above expression we show
how to invert it, under the assumption that one of its inputs is fixed. Therefore we write

x = ∑n−1
i=0 xi · 2i

, y = ∑n−1
i=0 yi · 2i

and z = ∑n−1
i=0 zi · 2i

with xi, yi and zi ∈ {0, 1} and assume that
y is fixed. Writing down the inverse non-linear operation at bit level is then straightforward:

x0 = (z0 ⊕ y0)

x1 = (z1 ⊕ y1)⊕ (x0 ∧ y0)

.

.

.

xi = (zi ⊕ yi)⊕ (xi−1 ∧ yi−1)

.

.

.

xn−1 = (zn−1 ⊕ yn−1)⊕ (xn−2 ∧ yn−2)

This proves that G is indeed a permutation. Further, it is a permutation when either of its
input arguments is fixed, making it also a latin square.

Features

The only operations required to define G are bitwise XOR, AND and logical bit shifts, which
has several advantages: All of the mentioned instructions can be implemented in constant

time regardless of the word size. Especially for hardware implementations there are no

carry-propagations to worry about, for example, as there would be for integer addition

mod 2n
.

Moreover no table-lookup instructions, like SBoxes, are required, where the table index is

data-dependent. Those operations, if not handled with extreme care, are often the reason for

implementations leaking side-channel information, making the affected algorithm vulnerable,

e.g., to timing-attacks [15]. By avoiding them, the task of hardening the cipher against side-

channel attacks gets obviously much easier. No specialised implementations are required,

e.g., bit-sliced SBoxes [5, 31], for table-lookups in constant time. Additionally, the waiving of

more sophisticated instructions like integer addition, multiplication, Galois field arithmetic or

other constructs based on linear algebra, has the effect that the algorithm is much easier to

implement (both in soft- and hardware) and thus reduces the threat of introducing unwanted

bugs.

6.3 The F Function

The layout of the round function F of NORX is the same as used in ChaCha [17].

Overview

Recall that F transforms a state S = s0 ‖ · · · ‖ s15 in two phases. First a column step is applied

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

followed by a diagonal step

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

26

Bijectivity

As G is a permutation, F is obviously a permutation, too. This means that there exist no states
S and S′, with S 6= S′, which produce the same result, i.e. Fl(S) = Fl(S′), after any number of
rounds l. This characteristic of F is important for the duplex construction [23, 20] in order to
retain some desirable security properties.

Features

One great advantage of the ChaCha-related layout of F is, that the modification of a single bit
in the input has the chance of affecting all 16 output words

2
after only one application of F.

This features greatly enhances diffusion. Another benefit of the layout is the ability to execute

the four applications of G in a step completely in parallel, which improves performance.

6.4 Number of Rounds

For a higher protection of the key and authentication tag, e.g. against differential cryptanalysis,

we chose twice the number of rounds for initialisation and finalisation, compared to the data

processing phases. This measure was already proposed in [20] and has only minor effects

on the overall performance, but greatly increases the security of NORX. The minimal value of

l = 4 is based on the following observations:

1. The best attacks on Salsa20 and ChaCha [10, 50, 52] break 8 and 7 rounds, respectively,
which roughly corresponds to 4 and 3.5 rounds of the NORX core. However this is within
a much stronger attack model than that provided by the duplex construction of NORX.

2. The preliminary cryptanalysis of NORX as presented in Chapter 7. The best differentials

we were able to find, belong to a class of high-probability truncated differentials over

1.5 rounds and a class of impossible differentials over 3.5 rounds. Despite the fact that
those differentials cannot be used to mount an attack on NORX, it might be possible to

find similar differentials, using more advanced cryptanalytic techniques, which could be

used for an attack.

The number of rounds may be adjusted according to the future cryptanalytic results on NORX.

6.5 Selection of Constants

6.5.1 Initialisation

The initialisation constants are listed in Table 3.4 and are derived through

(u0, . . . , u15) = F2(0, . . . , 15)

as already mentioned in §3.5.2. This approach allows an on-the-fly computation, if necessary,

and is meant to provide transparency in order to show that the values belong to the “nothing-

up-my-sleeves” category, i.e. that they were selected in such a way that there is no possibility

2
In fact we found for NORX only one case where less than 16 words are affected. This can be achieved through

the modification of three very specific bits in the input. See chapter Chapter 7 on cryptanalysis for more details.

27

to hide a backdoor. The main purpose of the initialisation constants is to provide some

asymmetry during initialisation and to limit the freedom where differences can be injected by

an attacker.

6.5.2 Domain Separation

The NORX algorithm is separated into different data processing phases. Each phase uses its

own domain separation constant to mark the end of certain events like the absorbing of data

blocks or merging and branching steps in case of an instance with parallelism degree p 6= 1. A
domain separation constant is always added to the least significant byte of the capacity word

s15. The constants are given in Table 3.3. The separation of the processing phase is important

for the security proofs of the indifferentiability of the duplex construction [21, 23]. In addition

they help to break the self-similarity of the round function and thus increase the complexity

of certain kind of attacks on NORX, for example, like slide attacks, see §7.4.2.

6.5.3 Rotation Offsets

The rotation offsets (r0, r1, r2, r3) used by NORX provide a good balance between security and
efficiency. The values ri, with 0 ≤ i ≤ 3, were selected according to the following conditions:

1. At least two out of four offsets are multiples of 8.

2. The remaining offsets are odd and have the form 8n± 1 or 8n± 3, with a preference for
the first shape.

The motivation behind those criteria has the following reasons: An offset which is a multiple of

8 preserves byte alignment and thus is much faster than an unaligned rotation on many non-
64-bit architectures. Many 8-bit microcontrollers have only 1-bit shifts of bytes, so for example
rotations by 5 bits are particularly expensive. Using aligned rotations, i.e. permutations of
bytes, greatly increases the performance of the entire algorithm. Even 64-bit architectures
benefit from such aligned rotations, for example when an instruction sequence of two shifts

followed by XOR can be replaced by SSSE3’s byte shuffling instruction pshufb. Odd offsets
break up the byte structure and therefore increase diffusion.

In order to find good rotation offsets and assess their diffusion properties, we used an

automated search combined with a diffusion test. Therefore let l denote a round number and
let L and Ll be lists. For each offset tuple (r0, r1, r2, r3) with ri ∈ {1, . . . , w− 1} satisfying the
above criteria, the following steps are repeated 106

times, after the offsets have been plugged

into G:

1. Choose two b-bit sized states S and S′ uniformly at random, such that hw(S⊕ S′) = 1.

2. Compute X = Fl(S)⊕ Fl(S′), where F denotes the round function of NORX.

3. Save hw(X) to Ll .

After the above loop is finished the test computes minimum, maximum, average and median

values of the elements of Ll , saves the latter together with the offsets to L and resets Ll . Then

it proceeds to the analysis of the next rotation tuple. This test is repeated until all candidate

offsets have been processed.

28

Finally, we chose the offsets (8, 19, 40, 63) for NORX64 and (8, 11, 16, 31) for NORX32, which
belonged to those having very high values for average and median Hamming weight for l = 1,
achieve full diffusion after l = 2, and additionally offer good performance.

Table 6.1 lists the results of the test for 32- and 64-bit core functions with l ≤ 4 and rotation
offsets as specified above. The test results show that the diffusion speed of NORX’s round

function F is almost as high as ChaCha’s and that full diffusion is reached after two rounds.
Fig. 6.3 shows how single bit changes in the word s0 propagate through the NORX state over

the course of 5 steps (= F2.5
). Unfortunately there seems to be no combination of rotation

values with 3 offsets being a multiple of 8 and one being w− 1, like BLAKE2’s (32, 24, 16, 63),
where F achieves a comparably strong diffusion as illustrated in Table 6.1. The reason for
this can be traced back to the replacement of integer addition by the non-linear operation of

NORX.

Table 6.1: Diffusion statistics for NORX and ChaCha round functions

NORX32 ChaCha (32-bit)

l min max avg med min max avg med

1 83 280 179.22 181 73 294 182.19 185
2 194 307 256.02 256 199 312 255.99 256
3 198 312 255.99 256 204 313 255.98 256
4 201 307 255.99 256 200 314 255.98 256

NORX64 ChaCha (64-bit)

l min max avg med min max avg med

1 95 429 230.13 222 73 506 248.84 246
2 440 589 511.98 512 430 591 512.01 512
3 434 589 512.00 512 439 589 511.97 512
4 428 589 511.98 512 435 585 512.00 512

0. Initialisation 3. Column Step

1. Column Step 4. Diagonal Step

2. Diagonal Step 5. Column Step

0. Initialisation 3. Column Step

1. Column Step 4. Diagonal Step

2. Diagonal Step 5. Column Step

Figure 6.3: Visualisation of NORX diffusion

29

6.6 The Padding Rule

The sponge (or duplex) construction offers protection against generic attacks if the padding

rule is sponge-compliant, i.e. if it is injective and ensures that the last block is different

from the all-zero block. In [22] it has been proven that the multi-rate padding satisfies those

properties. Moreover it is simple to describe, easy to implement and very efficient. Thus it

was a natural choice to be used in NORX. Additionally, the multi-rate padding increases the

complexity to mount certain kind of attacks on NORX, like slide attacks, see §7.4.2.

6.7 Absence of Backdoors

We, the designers of NORX, faithfully declare that we have not inserted any hidden weaknesses

in this cipher.

30

7 Security Analysis

This chapter presents preliminary cryptanalysis of NORX.

7.1 Security Bounds for the Mode of Operation

NORX is, at its core, a keyed sponge. LetΠ = (E ,D) denote NORX, with encryption function E ,
decryption function D, and based on an ideal underlying permutation p. Then the following
privacy and authenticity security bounds are satisfied

Advpriv
Π (qp, qE , λE) ≤

3(qp + σE)2

2b+1 +

(
8eqpσE

2b

)1/2

+
rqp

2c +
qp + σE

2k

Advauth
Π (qp, qE , λE , qD, λD) ≤

(qp + σE + σD)2

2b +

(
8eqpσE

2b

)1/2

+
rqp

2c

+
qp + σE + σD

2k +
(qp + σE + σD)σD

2c +
qD
2t

where r, c, b, k and t are rate, capacity, state, key and tag sizes, e is Euler’s number, qp are the

number of permutation queries, qE are the number of encryption queries of total length λE
and σE is specified as follows:

σE :=
qE

∑
j=1

σE ,j ≤

2λE + 4qE , if p = 0
λE + 3qE , if p = 1
λE + (p + 4)qE , if p > 1

The values qD , λD and σD for decryption D are specified analogously.
In summary, the NORX mode of operation achieves security levels of min{2b/2, 2c, 2k} assum-
ing an ideal underlying permutation p and, intuitively speaking, offers authenticity as long as
it offers privacy and the

(qp+σE+σD)σD
2c term—quadratic on the number of forgery attempts—is

negligible. For more information on the security proofs see [39, 6].

7.2 Differential Cryptanalysis

Differential attacks cover all attacks that exploit non-ideal propagation of differences in

a cryptographic algorithm (or of its components). Differential cryptanalysis is one of the

standard tools in the repertoire of every cryptanalyst and usually a lot of attacks on a cipher

are at least partially differential. It is thus crucial to analyse the resistance of new designs to

differential attacks.

First we introduce some of the required notations, then we analyse the propagation of

differences through the G function, show how to construct high-probability truncated dif-
ferentials of low weight for the core permutation Fl

and finally study impossible differential

cryptanalysis.

31

7.2.1 Notation

Definition 1. Let x and x′ be n-bit strings. We call α = x⊕ x′ the difference of x and x′ with
respect to bitwise XOR. Furthermore for tuples of n-bit strings (x0, . . . , xm−1) and (x′0, . . . , x′m−1)
we call the component-wise difference

(α0, . . . , αm−1) = (x0, . . . , xm−1)⊕ (x′0, . . . , x′m−1) = (x0 ⊕ x′0, . . . , xm−1 ⊕ x′m−1)

a tuple of differences.

Definition 2. An n-bit difference α with hw(α) = m and 1-entries at bit positions 0 ≤ i0 ≤
· · · ≤ im ≤ n− 1 is denoted by α[i0, . . . , im].

Definition 3. Let f : {0, 1}m·n −→ {0, 1}k·n, f (a0, . . . , am−1) = (b0, . . . , bk−1) be a boolean
function. Let α := (α0, . . . , αm−1) = (x0, . . . , xm−1)⊕ (x0, . . . , xm−1) and let β := (β0, . . . , βk−1) =
f (x0, . . . , xm−1)⊕ f (x′0, . . . , x′m−1) be tuples of differences. Then we call (α, β) a differential
with respect to the function f and denote it by

α
f−→ β

If the context is clear we skip the f above the arrow and just write α −→ β. Furthermore, we

call α an input difference and β an output difference of f .

In our later analysis of NORX we usually consider functions f having k = 1 or k = m.

Definition 4. Let f0, . . . , fl−1 be boolean functions defined by

fi : {0, 1}m·n −→ {0, 1}m·n, fi(a0, . . . , am−1) = (b0, . . . , bm−1)

for i ∈ {0, . . . , l − 1}. Further let α0 := (α0
0, . . . , α0

m−1), . . . , αl := (αl
0, . . . , αl

m−1) be tuples of
differences such that

αi fi−→ αi+1

Then we call (α0, . . . , αl) a differential characteristic with respect to the functions f0, . . . , fl−1
and denote it by

α0 f0−→ . . .
fi−1−→ αi fi−→ . . .

fl−→ αl

The tuples αj
with j ∈ {1, . . . , l − 1} are also called internal differences. In the case where

f := f0 = · · · = fl−1 we also say that (α
0, . . . , αl) is a differential characteristic with respect to

the iterated function f .

The notion of a differential characteristic can obviously be defined for arbitrary boolean

functions fi, but it is not required at this point. Thus, for reasons of simplicity, we decided to

define it only for the special case, where the dimension of the domain equals the dimension

of the codomain of fi.

Definition 5. Every differential (α, β) of a function f has a probability p ∈ [0, 1] associated to
it, which will be written as

Pr(α
f−→ β) = p

To capture all those informations in a compact form, we denote a differential (α, β) of proba-
bility p with respect to a function f by:

α
f−→
p

β

32

We use the commonly accepted assumption that the probability of a differential is equal to

the sum of probabilities of all differential characteristics corresponding to this differential.

Moreover it is commonly assumed that the probability of the best differential can accurately

be estimated by the probability of the best differential characteristic.

7.2.2 Differential Properties of G

In this section we analyse how n-bit input differences α with hw(α) = 1 propagate through G
and present the probabilities of the resulting output differences. Therefore, we decompose G
into two functions G1 and G2 and initially analyse the behaviour of G1.

Definition 6. Let G1 : {0, 1}4n −→ {0, 1}4n
be defined as

a ←− (a⊕ b)⊕ ((a ∧ b)� 1)
d ←− (a⊕ d) ≫ r0

c ←− (c⊕ d)⊕ ((c ∧ d)� 1)
b ←− (b⊕ c) ≫ r1

The function G2 is defined analogously to G1 but with rotation offsets r2 and r3, instead of r0
and r1. Thus, we obviously have G(a, b, c, d) = G2(G1(a, b, c, d)).

Let (x0, x1, x2, x3) and (x′0, x′1, x′2, x′3) be two tuples of n-bit strings having difference

(α0, α1, α2, α3) = (x0, x1, x2, x3)⊕ (x′0, x′1, x′2, x′3)

and let

(β0, β1, β2, β3) = G1(x0, x1, x2, x3)⊕ G1(x′0, x′1, x′2, x′3)

Further assume that hw(av) = 1 for a fixed v ∈ {0, . . . , 3} where the 1-entry is a bit position i
and hw(au) = 0 for all u ∈ {0, . . . , 3} \ {v}. Then we get differentials

(α0, α1, α2, α3)
G1−→ (β0, β1, β2, β3)

and associated probabilities as presented in Table 7.1. Note that the output difference βw, for

w ∈ {0, . . . , 3} is the XOR sum of the 1-bit differences βw[j] in a given column. The resulting
βw[j] do not hold for arbitrary αv[i] with i ∈ {0, . . . , n − 1}. For example if i = n − 1 the
difference αv[i] will be erased by the shift operation αv[i]� 1, thereby cancelling all output
differences depending

1
on the latter.

The differentials in Table 7.1 only hold for input differences having exactly one active bit.

Obviously, when allowing input differences with a larger number of active bits the situation

gets immediately a lot more complex. This could lead to situations where active bits of

different words interact and cancel each other out. For example an input difference (α0[n−
1], α1[n− 1], 0, 0) leads to a cancellation of the probability 1 output difference α0[n− 1] in the
output word a: The two active bits in the input words a and b neutralise each other during
the update of the word a. We will see below how this property can be exploited to build
differentials for G having high probability and low weight output differences.

1
We refer to Fig. C.1 in the appendix for a visualisation of the relations between input and output differences of

G1.

33

Table 7.1: Output differences βw[j] and their probabilities after G1 on an input difference αv[i]

β0[j] β1[j] β2[j] β3[j] Pr(αv[i]
G1−→ βw[j])

α0[i]

α0[i] 0 0 0 1

α0[i]� 1 0 0 0 2−1

0 α0[i] ≫ (r0 + r1) 0 0 1

0 ((α0[i] ≫ r0)� 1) ≫ r1 0 0 2−1

0 (α0[i]� 1) ≫ (r0 + r1) 0 0 2−1

0 (((α0[i]� 1) ≫ r0)� 1) ≫ r1 0 0 2−2

0 0 α0[i] ≫ r0 0 1

0 0 (α0[i] ≫ r0)� 1 0 2−1

0 0 (α0[i]� 1) ≫ r0 0 2−1

0 0 ((α0[i]� 1) ≫ r0)� 1 0 2−2

0 0 0 α0[i] ≫ r0 1

0 0 0 (α0[i]� 1) ≫ r0 2−1

α1[i]

α1[i] 0 0 0 1

α1[i]� 1 0 0 0 2−1

0 α1[i] ≫ r1 0 0 1

0 α1[i] ≫ (r0 + r1) 0 0 1

0 ((α1[i] ≫ r0)� 1) ≫ r1 0 0 2−1

0 (α1[i]� 1) ≫ (r0 + r1) 0 0 2−1

0 (((α1[i]� 1) ≫ r0)� 1) ≫ r1 0 0 2−2

0 0 α1[i] ≫ r0 0 1

0 0 (α1[i] ≫ r0)� 1 0 2−1

0 0 (α1[i]� 1) ≫ r0 0 2−1

0 0 ((α1[i]� 1) ≫ r0)� 1 0 2−2

0 0 0 α1[i] ≫ r0 1

0 0 0 (α1[i]� 1) ≫ r0 2−1

α2[i]

0 α2[i] ≫ r1 0 0 1

0 (α2[i]� 1) ≫ r1 0 0 2−1

0 0 α2[i] 0 1

0 0 α2[i]� 1 0 2−1

α3[i]

0 α3[i] ≫ (r0 + r1) 0 0 1

0 (α3[i]� 1) ≫ (r0 + r1) 0 0 2−1

0 0 α3[i] ≫ r0 0 1

0 0 (α3[i]� 1) ≫ r0 0 2−1

0 0 0 α3[i] ≫ r0 1

To compute the output differences for G we can obviously proceed in the following way:

(α0, α1, α2, α3)
G1−→ (β0, β1, β2, β3)

G2−→ (γ0, γ1, γ2, γ3)

Listing all 1-bit output differences γw[j] of G on an arbitrary input difference αv[i] is quite a
complex task. Thus we only give an estimation of the maximum number of active bits in the

output difference γ := (γ0, γ1, γ2, γ3) after one application of G. Table 7.2 lists the results,
which were also confirmed experimentally.

34

Table 7.2: Maximum Hamming weight of an output difference γw after one application of G
on an input difference αv[i]

a0[i] a1[i] a2[i] a3[i]

max. hw(γw) 102 115 34 39

7.2.3 Simple Differentials

In this section we show how to construct a class of high probability differentials for the round

function F and a small number of iterations Fl
. We will focus here on NORX64, but similar

considerations should hold for NORX32.

We first consider a simple attack model where the initial state is assumed chosen uniformly at

random and where one seeks differences in the initial state that give biased differences in the

state obtained after a small number of iterations of F. High-probability truncated differentials
wherein the output difference concerns only a small subset of bits (e.g., a single bit) are

sufficient to distinguish a (reduced-round) permutation from a random one, and are easier to

find for an adversary than differentials on all b bits of the state. To find such differentials we
start from our previous analysis of G and extend it to Fl

. First, we observe that it is easy to

track differences during the first few steps, and in particular to find probability-1 (truncated)

differential characteristics for a small number of iterations of F.

For example, by setting the active bit in the MSB of one of the input words a, b, c or d of G
a lot of differences are erased due to the shift operation� 1, as already noted previously.
Concretely, using two input words with the input difference α0[63], i.e. the MSB being active in
input a, six of the twelve output differences of G1 (!) are erased by� 1 (cf. Table 7.1). As the
shift is applied to the non-linear part of G a lot of non-probability-1 differences are deleted,
while mainly probability-1 differences remain. Additionally, if distinct input words have active

bits in the same positions it leads to further cancellations. Using this simple strategy we found

three notable differentials for G of high probability and with low weight output differences:

(8000000000000000, 8000000000000000, 8000000000000000, 0000000000000000) G−→
1

(0000000000000000, 0000000000000001, 8000000000000000, 0000000000000000)

(0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000) G−→
2−1

(8000000000000000, 0000000001000001, 8000000000800000, 0000000000800000)

(0000000000000000, 8000000000000000, 8000000000000000, 8000000000000000) G−→
2−1

(8000000000000000, 0000000003000001, 8000000001800000, 0000000000800000)

Applying those differentials to F has the effect that the diffusion of the state is delayed by
one step. Note that input differences with other combinations of active MSBs lead to similar

output differences, but none with a lower or equal Hamming weight as the above. Using the

first of the above differentials, we were able to easily derive a truncated differential over 3
steps (i.e. F1.5

), which has probability 1. This truncated differential can be used to construct
an impossible differential over 3.5 rounds for the 64-bit version of F, which is shown in the
next section.

35

We expect that advanced search techniques are able to find better differential distinguishers

for a higher number of iterations of F, such that the sparse difference occurs at a later
step than in the first. Nevertheless we expect that it is not possible to find differential

distinguishers for as much rounds as specified for our instances, see Table 3.1, taking into

account the reduced freedom an adversary has, when attacking the initialisation or round

permutation.

7.2.4 Impossible Differentials

Cryptanalysis using impossible differentials was introduced in 1998 by Knudsen to attack the

block cipher DEAL [42]. Later it was extended by Biham et al. in order to attack the block

ciphers Skipjack [25] and IDEA [26]. The latter introduces the so called miss-in-the-middle

technique. This approach combines two probability 1 differentials, one in forward and one
in backward direction which exhibit a conflict when both directions are joined. This strategy

leads to an impossible event, i.e. an incident having probability 0, and can be used to construct
distinguishers or even mount key recovery attacks.

In our case we construct an impossible differential over 3.5 rounds of the 64-bit version of F,
namely 3 steps in forward and 4 steps in backward direction, using the miss-in-the-middle
approach from above. An illustration

2
of the used differentials and the resulting conflict is

given in Fig. 7.1. A * denotes a partially known and a ? an unknown entry. Our analysis

8000000000000000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

F1.5
y

???*?*???***?**? *0**??*000000*** ***0?*?*00**000* 00**??*00***?***

???*????*??????? ?***??*????*?*?? ??*0???*0?*?*??* ??**?*?????*?*??

????*????*?????? ?*00000????*?*?? ??*0*?**0**?*??* ??**?*????****??

???***??*????*?* *000000****0**?? ?*00**0*0****0** ******?**?****??

* = *1002 vs. 0 = 00002

???????????????? ???????????????? ???????????????? ????????????????

???????????????? ???????????????? ???????????????? ????????????????

???????????????? ??????????????80 ???????????????? ????????????????

???????????????? ???????????????? ??????????????80 ????????????????

F−1.5 ◦ col−1
x

0000000000000000 0000000000000000 8000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

Figure 7.1: An impossible differential over 3.5 rounds of 64-bit F

shows that the conflict occurs in the 2nd bit of the 14th word. In forward direction this bit has
always

3
value 1 whereas in backward direction it has always value 0. Note that there are many

more impossible differentials of the above type starting from comparable input differences in

2
We refer to Fig. C.2 in the appendix for the bit representation of the output differences.

3
The impossible differential was validated empirically in about 232

runs.

36

forward and backward direction. Nevertheless, using such a simple approach, we were not

able to construct impossible differentials stretching over more than 3.5 rounds.

Those impossible differentials cannot be used to attack (round-reduced) NORX, due to the

following reasons:

1. The state setup used during initialisation prevents an attacker from setting the required

input difference in forward direction. It would be necessary to set differences in the first

three consecutive MSBs of a column, which is impossible, as every column is initialised

with at least two constant values (see initialisein Fig. 3.6). Thus, even in the related-key
attack model it is not possible to exploit this class of impossible differentials.

2. Under the assumption that an attacker is nonce-respecting [49] and that Fl
provides

maximum security for l ≥ 4, two states being set up with two different nonces lead to
two distinct internal states after the initialisation phase. Therefore an attacker does not

know how to set header blocks to construct the required input difference in forward

direction. The same holds for the payload phase. In summary the impossible differential

cannot be exploited at a later phase of the algorithm either.

7.3 Algebraic Cryptanalysis

Algebraic attacks on cryptographic algorithms discussed in the literature [7, 9, 30, 33] target

ciphers whose internal state is mainly updated in a linear way and thus exploit a low algebraic

degree of the attacked primitive. However, this is not the case for NORX, where the b inner
state bits are updated in a strongly non-linear fashion. In the following we briefly discuss the

non-linearity properties of NORX, demonstrating why it is unlikely that algebraic attacks can

be successfully mounted against the cipher.

A convenient way of representing a Boolean function is through its Algebraic Normal Form

(ANF). Given a Boolean function f : {0, 1}n −→ {0, 1}, the ANF representing f is a multivariate
polynomial, i.e. a sum of monomials in n input variables. Both a large number of monomials
in the ANF and a good distribution of their degrees are important properties of non-linear

building blocks in ciphers.

We constructed the ANF of G and measured the degree of every of the 4w polynomials and
the distribution of the monomials. Table 7.3 reports the number of polynomials per degree

for the 32- and 64-bit versions, as well as information on the distribution of monomials.

Table 7.3: Number of polynomials by degree, and number of monomials by polynomial

#polynomials by degree #monomials

3 4 5 6 7 8 min max avg med

64-bit 2 6 122 2 8 116 12 489 253 49.5
32-bit 2 6 58 2 8 52 12 489 242 49.5

In both cases most polynomials have degree 5 or 8 and merely 2 have degree 3. Multiplying
each of the above values by 4 gives the distribution of degrees for the ANF of the whole state

37

after one column or diagonal step. Due to memory constraints, we were unable to construct
4

the ANF for a single full round F, neither for the 64-bit nor for the 32-bit version. In summary,
this shows that the state of NORX is updated in a strongly non-linear fashion. Due to the

rapid growth of the degree and the huge state size of NORX we believe that it is unlikely that

algebraic cryptanalysis can be used to successfully mount an attack on the AEAD scheme.

7.4 Other Attacks

In this section we briefly review other kinds of attacks that may be used against NORX.

7.4.1 Fixed Points

The G permutation and thus any iteration of the round function F have a trivial distinguisher:
the fixed points G(0) = 0 and Fl(0) = 0. Nevertheless it seems hard to exploit this property,
as hitting the all-zero state is as hard as hitting any other arbitrary state. Thus the ability to

hit a predefined state implies the ability to recover the key, which is equivalent to completely

breaking NORX. Therefore the zero-to-zero point is no significant threat to the security of

NORX.

Furthermore, we used the constraint solver STP [34] to prove that there are no further fixed

points. For NORX32 the solver was able to show that this is indeed the case, but for NORX64
the proof is a lot more complex. Even after over 1000 hours, STP was unable to finish its
computation with a positive or negative result. We find it unlikely that there are any other

fixed points in NORX64 besides the zero-to-zero point.

7.4.2 Slide Attacks

Slide attacks try to exploit the symmetry in a primitive that consists of the iteration of a

number of identical rounds. They were introduced by Biryukov et al. [28, 29] to cryptanalyse

block ciphers. Later they were also extended to stream ciphers [47] and hash functions [35].

To protect sponge constructions against slide attacks two simple countermeasures can be

found in the literature:

1. In [35] it is proposed to add a non-zero constant to the state just before applying the

permutation.

2. In [46] it is recommended to use a message padding, which ensures that the last

processed data block is different from the all-zero message.

The duplex constructions is derived from sponge functions, hence the above countermeasures

should hold for the former, too, and thus for NORX. Both defensive mechanisms are already

integrated into NORX: the domain separation constants are added to the state just before the

permutation Fl
is applied and the multi-rate padding ensures that the last processed data

block is different from the all-zero block. Hence, slide attacks should pose little to no threat to

NORX.

4
Using SAGE [51] on a workstation with 64 GiB RAM.

38

7.4.3 Rotational Cryptanalysis

Rotational cryptanalysis was introduced by Khovratovich and Nikolić in [40] to analyse ARX

based primitives. The idea is to track the propagation of rotational relations through a

cryptographic transformation. Once rotation-invariant behaviour is detected, it can be used

to construct distinguishers, mount key recovery attacks and so on. Rotational cryptanalysis

was successfully applied to several simplified cryptographic primitives including Skein [41] and

Keccak [44].

NORX includes several defense mechanisms to increase the difficulty of finding exploitable

rotation-invariant behaviour:

1. During state setup 8 out of 16 words are initialised with asymmetric constants, which
impedes the occurrence of rotation-invariant behaviour and limits the freedom of an

attacker. A similar approach is also used in Salsa20 [16].

2. The non-linear operation of NORX contains a non rotation-invariant bit-shift� 1.

3. NORX is based on the duplex construction, which prevents an attacker from modifying

the complete internal state at a given time. He is only able to influence the rate bits, i.e.

at most r = 12w bits of the state, and has to “guess” the other 4w bits in order to mount
an attack.

39

8 Intellectual Property

We, the designers of NORX, do hereby declare that

• NORX is free for everyone to use;

• We are not aware of any patent or patent application that may cover the practice of the
NORX algorithm;

• We have not filed any patent application related to the NORX algorithm.

If any of this information changes, the submitter/submitters will promptly (and within at most

one month) announce these changes on the crypto-competitionsmailing list.

40

9 Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee

regarding the selection or non-selection of this submission as a second-round candidate, a

third-round candidate, a finalist, a member of the final portfolio, or any other designation

provided by the committee. The submitter/submitters understand that the committee will

not comment on the algorithms, except that for each selected algorithm the committee will

simply cite the previously published analyses that led to the selection of the algorithm. The

submitter/submitters understand that the selection of some algorithms is not a negative

comment regarding other algorithms, and that an excellent algorithmmight fail to be selected

simply because not enough analysis was available at the time of the committee decision.

The submitter/submitters acknowledge that the committee decisions reflect the collective

expert judgments of the committee members and are not subject to appeal. The submitter/-

submitters understand that if they disagree with published analyses then they are expected

to promptly and publicly respond to those analyses, not to wait for subsequent committee

decisions. The submitter/submitters understand that this statement is required as a condition

of consideration of this submission by the CAESAR selection committee.

41

10 Acknowledgements

The authors thank Frank K. Gürkaynak, Mauro Salomon, Tibor Keresztfalvi and Christoph

Keller for implementing NORX in hardware and for giving insightful feedback from their

hardware evaluation.

Moreover, the authors would like to thank Alexander Peslyak (Solar Designer), for giving them

access to one of his Haswell machines, so that they could test their AVX2 implementations of

NORX.

42

Bibliography

[1] eSTREAM - the ECRYPT Stream Cipher Project, 2004–2008. http://www.ecrypt.eu.org/
stream.

[2] SHA-3 Competition, 2007–2012. http://csrc.nist.gov/groups/ST/hash/sha-3/
Round3/index.html.

[3] CAESAR— Competition for Authenticated Encryption: Security, Applicability, and Robust-

ness, 2014. http://competitions.cr.yp.to/caesar.html.

[4] Official website of NORX, 2014. https://www.norx.io.

[5] Martin Albrecht, Nicolas T. Courtois, Daniel Hulme, and Guangyan Song. Bit-Slice Im-

plementation of PRESENT in Pure Standard C, v1.5, 2011. Opensource code available at

https://bitbucket.org/malb/research-snippets/src.

[6] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of keyed

sponge constructions using a modular proof approach. In Gregor Leander, editor, Fast

Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11,

2015, Revised Selected Papers, volume 9054 of Lecture Notes in Computer Science, pages

364–384. Springer, 2015.

[7] Frederik Armknecht. On the Existence of Low-Degree Equations for Algebraic Attacks.

Cryptology ePrint Archive, Report 2004/185, 2004. http://eprint.iacr.org/2004/185.

[8] Jörg Arndt. Matters Computational: Ideas, Algorithms, Source Code. Springer-Verlag New

York, Inc., New York, NY, USA, 1st edition, 2010. http://jjj.de/fxt/fxtpage.html#
fxtbook.

[9] Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi Shamir. Efficient

FPGA Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-128.

Cryptology ePrint Archive, Report 2009/218.

[10] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Christian

Rechberger. New Features of Latin Dances: Analysis of Salsa, ChaCha and Rumba. In

Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS, pages 470–488. Springer, 2008.

[11] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W. Phan. SHA-3

Proposal BLAKE. In NIST SHA-3 Proposal, 2010. https://131002.net/blake.

[12] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX8 and NORX16: Au-

thenticated Encryption for Low-End Systems. Cryptology ePrint Archive, Report 2015/1154,

2015. http://eprint.iacr.org/2015/1154.

[13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein.

BLAKE2: Simpler, Smaller, Fast as MD5. In Michael Jacobson, Michael Locasto, Payman

Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 2013, volume 7954 of LNCS, pages

119–135. Springer, 2013.

43

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/index.html
http://competitions.cr.yp.to/caesar.html
https://www.norx.io
https://bitbucket.org/malb/research-snippets/src
http://eprint.iacr.org/2004/185
http://jjj.de/fxt/fxtpage.html#fxtbook
http://jjj.de/fxt/fxtpage.html#fxtbook
https://131002.net/blake
http://eprint.iacr.org/2015/1154

[14] Michael Beeler, R. William Gosper, and Richard Schroeppel. HAKMEM. Artificial In-

telligence Memo 239, Massachusetts Institute of Technology, February 1972. http:
//dspace.mit.edu/handle/1721.1/6086.

[15] Daniel J. Bernstein. Cache-Timing Attacks on AES, 2005. http://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.

[16] Daniel J. Bernstein. Salsa20 Security, 2005. http://cr.yp.to/snuffle/security.pdf.

[17] Daniel J. Bernstein. ChaCha, a Variant of Salsa20. InWorkshop Record of SASC 2008: The

State of the Art of Stream Ciphers, 2008. http://cr.yp.to/chacha.html.

[18] Daniel J. Bernstein. The Salsa20 Family of Stream Ciphers. In Matthew Robshaw and

Olivier Billet, editors, New Stream Cipher Designs, volume 4986 of LNCS, pages 84–97.

Springer, 2008.

[19] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the Security

of Keyed Sponge Constructions. Presented at SKEW 2011, 16–17 February 2011, Lyngby,

Denmark, http://sponge.noekeon.org/SpongeKeyed.pdf.

[20] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Permutation-based

Encryption, Authentication and Authenticated Encryption. Presented at DIAC 2012, 05–06

July 2012, Stockholm, Sweden.

[21] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the Indiffer-

entiability of the Sponge Construction. In Nigel Smart, editor, EUROCRYPT 2008, volume

4965 of LNCS, pages 181–197. Springer, Heidelberg, 2008.

[22] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Cryptographic

Sponge Functions, January 2011. http://sponge.noekeon.org/CSF-0.1.pdf.

[23] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Duplexing the

Sponge: Single-Pass Authenticated Encryption and Other Applications. In A. Miri and

S. Vaudenay, editors, SAC 2011, volume 7118 of LNCS, pages 320–337. Springer, 2011.

[24] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, and Ronny van Keer.

KECCAK implementation overview, May 2012. http://keccak.noekeon.org.

[25] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31 Rounds

Using Impossible Differentials. In Jacques Stern, editor, EUROCRYPT 1999, volume 1592 of

LNCS, pages 12–23. Springer, Heidelberg, 1999.

[26] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in theMiddle Attacks on IDEA and Khufu. In

Lars Knudsen, editor, FSE 1999, volume 1636 of LNCS, pages 124–138. Springer, Heidelberg,

1999.

[27] Alex Biryukov and Dmitry Khovratovich. PPAE: Parallelizable Permutation-based Au-

thenticated Encryption. Presented at DIAC 2013, 11–13 August 2013, Chicago, USA,

http://2013.diac.cr.yp.to/slides/khovratovich.pdf.

[28] Alex Biryukov and David Wagner. Slide Attacks. In Lars Knudsen, editor, FSE 1999, volume

1636 of LNCS, pages 245–259. Springer, Heidelberg, 1999.

44

http://dspace.mit.edu/handle/1721.1/6086
http://dspace.mit.edu/handle/1721.1/6086
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/snuffle/security.pdf
http://cr.yp.to/chacha.html
http://sponge.noekeon.org/SpongeKeyed.pdf
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org
http://2013.diac.cr.yp.to/slides/khovratovich.pdf

[29] Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart Preneel, editor,

EUROCRYPT 2000, volume 1807 of LNCS, pages 589–606. Springer, Heidelberg, 2000.

[30] Nicolas T. Courtois. Algebraic Attacks on Combiners with Memory and Several Outputs.

In Choon sik Park and Seongtaek Chee, editors, Information Security and Cryptology (ICISC),

volume 3506 of LNCS, pages 3–20. Springer, Heidelberg, 2004. http://eprint.iacr.org/
2003/125.

[31] Nicolas T. Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving Circuit Optimisation

Problems in Cryptography and Cryptanalysis. In SHARCS, 2012. http://eprint.iacr.org/
2011/475.

[32] Joan Daemen and Vincent Rijmen. The Advanced Encryption Standard, 2001. http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[33] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. In Antoine

Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299. Springer, Heidelberg,

2009.

[34] Vijay Ganesh, Ryan Govostes, Khoo Yit Phang, Mate Soos, and Ed Schwartz. STP — A

Simple Theorem Prover, 2006–2013. http://stp.github.io/stp.

[35] Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide Attacks on a Class of Hash

Functions. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 143–160.

Springer, Heidelberg, 2008.

[36] Robert Granger, Philipp Jovanovic, Bart Mennink, and Samuel Neves. Improved Masking

for Tweakable Blockciphers with Applications to Authenticated Encryption. In Marc

Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016,

volume 9665 of LNCS, pages 263–293. Springer Berlin Heidelberg, 2016.

[37] Luca Henzen, Flavio Carbognani, Norbert Felber, and Wolfgang Fichtner. VLSI Hardware

Evaluation of the Stream Ciphers Salsa20 and ChaCha, and the Compression Function

Rumba. In 2nd International Conference on Signals, Circuits and Systems 2008, pages 1–5.

IEEE, 2008.

[38] Antoine Joux. Authentication Failures in NIST Version of GCM, 2006. http://csrc.nist.
gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf.

[39] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2
Security in Sponge-Based

Authenticated Encryption Modes. Cryptology ePrint Archive, Report 2014/373, 2014.

http://eprint.iacr.org/2014/373.

[40] Dmitry Khovratovich and Ivica Nikolić. Rotational Cryptanalysis of ARX. In Seokhie Hong

and Tetsu Iwata, editors, FSE 2010, volume 6147 of LNCS, pages 333–346. Springer, 2010.

[41] Dmitry Khovratovich, Ivica Nikolić, and Christian Rechberger. Rotational Rebound Attacks

on Reduced Skein. In Masayuki Abe, editor, ASIACRYPT, volume 6477 of LNCS, pages 1–19.

Springer, Heidelberg, 2010.

[42] Lars R. Knudsen. DEAL— A 128-bit Block Cipher. In NIST AES Proposal, 1998.

45

http://eprint.iacr.org/2003/125
http://eprint.iacr.org/2003/125
http://eprint.iacr.org/2011/475
http://eprint.iacr.org/2011/475
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://stp.github.io/stp
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/Joux_comments.pdf
http://eprint.iacr.org/2014/373

[43] Donald E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,

Part 1, volume 4A. Addison-Wesley, Upper Saddle River, New Jersey, 2011. http://
www-cs-faculty.stanford.edu/~uno/taocp.html.

[44] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational Cryptanalysis of Round-

Reduced KECCAK. Cryptology ePrint Archive, Report 2012/546, 2012. http://eprint.iacr.
org/2012/546.

[45] National Institute of Standards and Technology. Recommendation for Block Cipher

Modes of Operation: Galois/Counter Mode (GCM) and GMAC, 2007. http://csrc.nist.
gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

[46] Thomas Peyrin. Security Analysis of Extended Sponge Functions. Presented at

the ECRYPT Workshop Hash Functions in Cryptology: Theory and Practice, Leiden,

The Netherlands, June 4th 2008, http://www.lorentzcenter.nl/lc/web/2008/309/
presentations/Peyrin.pdf.

[47] Deike Priemuth-Schmid and Alex Biryukov. Slid Pairs in Salsa20 and Trivium. In Dipan-

wita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Indocrypt, volume 5365 of

LNCS, pages 1–14. Springer, Heidelberg, 2008. http://eprint.iacr.org/2008/405.

[48] Phillip Rogaway. Authenticated-Encryption with Associated-Data. In ACM Conference on

Computer and Communications Security (CCS’02), pages 98–107. ACM press, 2002.

[49] Phillip Rogaway. Nonce-Based Symmetric Encryption. In Bimal Roy and Willi Meier,

editors, FSE 2004, volume 3017 of LNCS, pages 348–358. Springer, Heidelberg, 2004.

[50] Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Improved Key Recovery

Attacks on Reduced Round Salsa20 and ChaCha. In Taekyoung Kwon, Mun-Kyu Lee, and

Daesung Kwon, editors, ICISC 2012, volume 7839 of LNCS, pages 337–351. Springer, 2012.

[51] W. A. Stein. Sage Mathematics Software. The Sage Development Team, 2005–2013. http:
//sagemath.org.

[52] Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki Nakashima.

Differential Cryptanalysis of Salsa20/8. In The State of the Art of Stream Ciphers (SASC),

2007.

46

http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://www-cs-faculty.stanford.edu/~uno/taocp.html
http://eprint.iacr.org/2012/546
http://eprint.iacr.org/2012/546
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf
http://eprint.iacr.org/2008/405
http://sagemath.org
http://sagemath.org

A Test Vectors

A.1 Traces for F

To verify correctness of an F implementation we suggest to use the derivation of the NORX
initialisation constants:

(u0, . . . , u15) = F2(0, . . . , 15)

The values of u0, . . . , u15 are given in Table 3.4.

A.2 Full AEAD Computations

We assume that the following input data is given for NORX32 and NORX64, respectively:

NORX32

type data #bytes

K : 00 01 . . . 0E 0F 16

N : 20 21 . . . 2E 2F 16

A : 00 01 . . . 7E 7F 128

M : 00 01 . . . 7E 7F 128

Z : 00 01 . . . 7E 7F 128

NORX64

type data #bytes

K : 00 01 . . . 1E 1F 32

N : 20 21 . . . 3E 3F 32

A : 00 01 . . . 7E 7F 128

M : 00 01 . . . 7E 7F 128

Z : 00 01 . . . 7E 7F 128

The test vectors for the five proposed instances are given on the following pages. Intermediate

values are snapshots of the state after initialisation (Fig. 3.5, line 1), after header processing

(Fig. 3.5, line 2), after message encryption (Fig. 3.5, line 5), after trailer processing (Fig. 3.5, line

6), and after finalisation (Fig. 3.5, line 7).

For more tests we refer to the NORX software package available at [4]. The above test vectors

were generated using utils/debug.c. See also utils/check.c, utils/genkat.c, and the
various kat.h files for a more comprehensive test-framework.

47

NORX32-4-1

State after initialisation (Fig. 3.5, line 1)

7DD54975 C374FFC8 1DF66F83 08CEF7E9
CA5295E8 8E1E6324 538244DA 3091DC5D
5288E900 EDDAFB81 1A345AE0 933EC3AB
BED76EB5 8B64D948 A59BD31B 6BBBD034

State after header processing (Fig. 3.5, line 2)

2DFDA46B 956D99E2 DE62A45D 59A4AD56
F9A5411A 759C0658 45CF1EA3 A9515464
60CCA3C1 A29F076D FAA12E42 EA22ED90
7D10BA9D 407E2C5B 97DC4FA4 80401262

State after message encryption (Fig. 3.5, line 5)

9769850C 41240274 A264E03A B808815A
9285A6D3 8665C774 ED279CE2 9571FB11
F39624ED 3DCE8561 81879FF2 45B5E234
10D6694E AFF8A691 9991AECE BFFA4576

State after trailer processing (Fig. 3.5, line 6)

BBAB2C4A 42BF34A5 3AD53DFA AF184F4D
66A33356 481AAE25 471E110F 9FBC7740
33A4CBDB 5CA77A41 ABCDF216 1A213FE2
353816EC 8EFF5ABE 3FB2298B E4A9EC82

State after finalisation (Fig. 3.5, line 7)

97537D63 63AC168C 6CEF0F5B EC0114E9
D6A022EC FF4395E0 4F29B8B5 B8CC8998
D92C5C49 74BA3CEF 964EEDD3 23DF1024
BCE454D5 89B75B6B EA597754 47CFFFCD

Ciphertext and authentication tag

C : 6C E9 4C B5 48 B2 0F ED 7B 68 C6 AC 60 AC 4C B5
EB B1 F0 9A EC 5A 75 0E CF 50 EC 0E 64 93 8B F2
40 17 A4 FF 06 84 F8 08 A6 7C 19 6C 31 A0 AF 12
56 9B E5 F7 C5 6A D3 BC AC 88 DA 36 86 57 5F 93
43 96 8D A2 20 77 EE CC E7 D6 63 17 49 08 A3 F7
3C 9E 9A C1 49 B5 CE 6B E6 9C 9E 31 7C D7 E7 E8
0C 85 69 97 74 02 24 41 3A E0 64 A2 5A 81 08 B8
D3 A6 85 92 74 C7 65 86 E2 9C 27 ED 11 FB 71 95

T : D5 54 E4 BC 6B 5B B7 89 54 77 59 EA CD FF CF 47

48

NORX32-6-1

State after initialisation (Fig. 3.5, line 1)

6AA9881B E39461D4 72E17E31 D42E766A
773C7827 E93C085F 08201969 1E455C9D
016FDB2E AB3DE913 69289A33 A5CE3028
C18142E4 71F18D99 CE8FD48D 1C141F99

State after header processing (Fig. 3.5, line 2)

2C6CF747 221AA528 E21D7954 70765726
48BED941 5DEC2685 628316CC D117C238
A86F0D92 E606ECAF 60B283A8 5B654A7B
C9ACD7AC 89250D1C F4DD1B13 84075320

State after message encryption (Fig. 3.5, line 5)

F357C5AC 11E7DCD2 480A43A5 A263168C
48816707 6B3AC79A 39FE6AFB 979FE76A
84CF2D94 357F0F56 883EDBA4 8D7BA338
85F97717 187F6B85 04ED8B2E A5671D54

State after trailer processing (Fig. 3.5, line 6)

72FC85AC 5CE4F0D1 F67A024C A2BA77E4
8EF884EF 7864FC01 24984D54 C00489BA
727789E5 EE8B24FE 546C3F3A 0D32D7B4
843B41CB FC32B163 0E659E5A ECAC8817

State after finalisation (Fig. 3.5, line 7)

8D3E098F 4D470E23 219829EE 96A87C5B
189B7D32 03413845 0D513C08 436ECF50
54ED6AE8 88BB869A 78A96727 13A396EF
8F1AB1B3 B1F1949A E95318AC 4A26434C

Ciphertext and authentication tag

C : 20 9B 0B 2A FE 36 2A 83 3B B1 8A CF 03 E1 D0 C2
7C 69 47 52 66 79 47 FC 73 8C 0E 40 E3 D5 97 C2
2D 74 E9 06 E8 C4 73 AD F0 DB 63 61 D3 97 41 C4
26 0F B3 D3 9F 84 22 A3 CF DF 93 0D 2D 17 75 EB
3F 97 0E 52 95 23 07 C9 AA 07 3F C5 E1 19 BA DF
B2 FF 00 9E 69 7C 8E 85 61 4F 44 78 C5 7B D2 B4
AC C5 57 F3 D2 DC E7 11 A5 43 0A 48 8C 16 63 A2
07 67 81 48 9A C7 3A 6B FB 6A FE 39 6A E7 9F 97

T : B3 B1 1A 8F 9A 94 F1 B1 AC 18 53 E9 4C 43 26 4A

49

NORX64-4-1

State after initialisation (Fig. 3.5, line 1)

ED1C05E4E034B18B A98C191C6015FA6D 288C3313ACF5E185 94E37DCA8C2B520F
841D5FBE319581DE 6BA9AE4E997C10DF 9ACC31C63498AAB8 BC4F4AA085B8FAD9
24A958D377B4FBBF 8DDB5DC488A3A710 7F776980AAA321EF 4D4C321A44EE66D9
C6439632673FBDC2 950244CDFEAEA45E EB8B0AFF16BEDBE0 68A7A80B2838111F

State after header processing (Fig. 3.5, line 2)

07D9A7A131D4D6E0 5B60B0B0847E0416 57F3CB734EC314B3 F9CFDC4B605A6CCC
5E3F25A15BF57819 3501EA9EDDF5CC6C 69BAAF08D99F96C2 CF86E9721020F64E
3352D33F5677CBC4 331C29A0674FEF14 CB74AFFFA9BD69D9 5810E32F833F0370
44C3442263959E68 522FC8BBFE971C48 4EC92E818EA35AD3 BB223CBC51462414

State after message encryption (Fig. 3.5, line 5)

A4461CDB6586E74B BDDF7652BF4F1AB0 DCF86684B8BFEB30 D870D0D016787A89
C5DC8F2CC92A2D60 404DE2D5457A5178 8A2475887B1ABF74 AD5BEFE2F99B111F
D258C60C34FC528A 69C0DA88A6C5CD25 3328D007C5C35CC3 3744B8E898EC83DD
70AB4D51F1570C40 5E3331A6663C18EE BA01BA7CFDF2C4BF 36FA274968BF8B0A

State after trailer processing (Fig. 3.5, line 6)

B1B64376441A2AB0 2F5BE2578863D5EC 66F953E878E37E6B EEE236C48DEDFFEE
6778F573276FDF5F E3C3E60EDC6DB52D B0AAEFFFF4764978 2A0F46F39ED63CF1
A9C34DCB7057873C 594CC2D6E926D398 D85F144A45107F10 EE584A7C1D80E6D3
7B763E9FCBB1F9D3 9A55D3CAC654F97A 9308DF76F6D7995E 6D9E59C21CC59E3B

State after finalisation (Fig. 3.5, line 7)

45D70450C188B282 44CB44A8ACC7D823 6CF99985A76DD706 F76D93B792F90C83
BCB8EC0B3370F727 011728D02D035E19 CC7972F3E89E595A A75510060F10F800
D3314C7CDF7C4C99 52A16E0D4BD61F3C 4EA70ACD1A1F1D3A B56927EF60BB58D4
7623A30533FAF2D1 3F3089C9D1613AE2 E4175BA55A93BDBF 8E4073C4334725E7

Ciphertext and authentication tag

C : C0 81 6E 50 8A E4 A0 50 0B 93 38 7B BB AB C2 41
AC 42 38 7E F5 E8 BF 0E C3 82 6C ED E1 66 A1 D5
CA A3 E8 D6 2C D6 41 B3 FA F2 AA 2A DD E3 E5 ED
0A 13 BD 8B 96 D5 F0 FB 7F E3 9C A7 80 95 31 75
E2 45 BC 3E 53 4B 80 0E 96 46 77 1F 13 EA 40 85
CB 3E 26 7F 10 6F 5F 17 A0 64 FF 23 4A 02 7C 64
4B E7 86 65 DB 1C 46 A4 B0 1A 4F BF 52 76 DF BD
30 EB BF B8 84 66 F8 DC 89 7A 78 16 D0 D0 70 D8

T : D1 F2 FA 33 05 A3 23 76 E2 3A 61 D1 C9 89 30 3F
BF BD 93 5A A5 5B 17 E4 E7 25 47 33 C4 73 40 8E

50

NORX64-6-1

State after initialisation (Fig. 3.5, line 1)

FBE74F8B8F87B637 D8CF91E950A5E7A3 BF8B7D6EE6F66D23 986681BC560A954D
E7EC41745D71BB3E 4EC9F3E9DDDD549A 04D80F76956ABE4E 40357E0A23B3A8DD
45CC935DD4C35559 6665AC3AE53EE95C 92652F352B2741AF A793FACE1833962F
8E98DF92B5CC6486 811F60A1A563FCA3 C5208A2F80A021D7 E356DE42D6A7FFDF

State after header processing (Fig. 3.5, line 2)

86A6D4B372772D8E 442DD22404C14516 F545B5F6F138F2C8 BA8F26D2915DB59B
7E47657EFDBD4A19 227101E45166C034 57788639F923F1B7 F5D4510A6E2E43CE
95FE28CEDFA322B5 ACA45A91CDA378E0 AA3B58DAEB4C0C89 3CCE3333A7A6D105
D4E9DE665C5F55A5 360425F706D0732C 1F0AC3505DBDD8A4 0609356E2891D9FB

State after message encryption (Fig. 3.5, line 5)

6F50D4782B87F3C4 BED2B8E33C65DB40 B756F47FE9F9A2A7 232FE227928CDBF0
163AA5E6AA2B8F1F BE9B93658DFEA66C 37AFC3D1C18E7B4E 1E405E25DC276BF0
0942EC8E4D5CF8A8 52642976ABF1E083 D92BABC7DFDCC66D 1A58A4388C3EC775
6C2C708571473F82 5D5415187A314FA7 E6438637D8DF9BBE 81AF89907BEEFBEF

State after trailer processing (Fig. 3.5, line 6)

803AADDC8C8A6C3C 240E45C8DDDF922F 46612516E3B59292 E8151BED6699777C
94EA2F311F5FD215 AE34A389A9E4D09A 2E1FC599862D05CE 6EF55D773D4E3841
37608855B6501422 790724A43D36A080 6D677BE24077921B 0B40C69E92D8D68E
0A31B5155E7C5E32 727A6A113C0DD6D6 7AAC1CFDD18EB31D DF4BC15545BA3CB2

State after finalisation (Fig. 3.5, line 7)

A2F7E3AFA01DCFFB 14D342E71FE41B15 8B8AC118983D0B11 ACC01CEAF112614B
8ABC00E2F599919B 991AA67F0A29616B 98A27A56EF31B1AE F294074232A3BA81
F1470D44E094DB73 F93ED9FD0F5395B4 02E9988E4A8272B2 CE07BC4DA6DD7D99
DBBE9152280DD1A0 38E20F7EC4BD7C7B ABBC57F0C55BF55B 2C9BD283D0CC572C

Ciphertext and authentication tag

C : 50 CE 69 2C 19 CB 91 02 C6 12 96 6F 0F 62 6B 62
96 DE 89 27 1C 98 29 10 AA C1 C3 55 52 2E 8F A7
13 03 F8 D5 C9 DE 39 04 84 BA 91 A9 94 CF F9 1B
F7 15 D6 CB 22 CC 00 F3 64 02 10 03 17 19 61 68
72 39 DD 94 53 02 9B 87 85 9C 10 93 21 13 59 40
BC 1B C8 1A 55 A9 51 C7 1B 29 42 FF DE BF 8D 13
C4 F3 87 2B 78 D4 50 6F 40 DB 65 3C E3 B8 D2 BE
A7 A2 F9 E9 7F F4 56 B7 F0 DB 8C 92 27 E2 2F 23

T : A0 D1 0D 28 52 91 BE DB 7B 7C BD C4 7E 0F E2 38
5B F5 5B C5 F0 57 BC AB 2C 57 CC D0 83 D2 9B 2C

51

NORX64-4-4

State after initialisation (Fig. 3.5, line 1)

09C1FAB275E26554 B88696E71C5F243B 6461DD69FAD686BD C7E59562326FD541
9A6F849C8C700398 D98F499A54C2D279 89B94070BBFA7D93 B68DA702581F2FFB
4E411341A13B2DF4 E32F270FAFA72967 1E7026F60F7C89FF D61E9C0926B80488
E5B95502271B6092 08B3C9B59806B885 D4DD9B5E6CB8B11F E4EB9CCF3A9FDC04

State after header processing (Fig. 3.5, line 2)

C2E06BC5BFE0984A 7339373DA279C0EA F70ABAF1783FAAC9 33CC3C2C5E8B7D0A
FB87B19894049DAE 87793479CB131B60 7B53C5803ACFF65F 44C8DF1D14396D3B
EC4024C6C6B74E89 BE2EECAFCB79A73D 00857DB83628CC10 B581AFB4D2F81FEA
612D5D628BAF35B4 1026D7DDDDE32B55 BAA88B60B5C7BB19 8090D73B27BAE22F

State after message encryption (Fig. 3.5, line 5)

B54F46C2037FE58D 0CB5F144A62F7D5A AAC797F1084FACE7 465EF4939F3D9E9B
F8CBB14B3CDC1972 E94DB2745C7ABA62 2BAAD57DAF1BCEEF 4D130FB81726FBB6
8CE4926961F7C93C BD25C2C9AB9F14C2 E1B9FC2C7658F531 D62F84C49F2376C8
EA3D7AEA6006DE4E 9936A13B9BEE9F38 0ACFF68DB00C231E 76A4911E8C2614EE

State after trailer processing (Fig. 3.5, line 6)

3EE2EB5074C21159 0182D18A98FBAC1C EBDBAE586D91C714 879432FD0E488B39
2178909DD1991DF9 251ECA5BDC482B35 0C60578C3D60CFFD DB5E7C8F9E000D45
FCDD16FE2F31D0A3 AA6060E3943E32E3 30BFAD62B34569BA B9C711F41A85F4C8
ECD25D60681F60D4 FB14C2DCD8764106 77A2E80E1B3AC500 D776DEBF23C4B96D

State after finalisation (Fig. 3.5, line 7)

7915D8E31EF87114 1C9FDCFF1CCEF122 2F224AC3007FF3B1 9E2C80A3F55230CE
D2135CA3D669A42A 3D7EAA58FB4BF9F6 E5586C8CF476570A E2A795E869BB2DCF
BE59054CEFE4E0E1 D6054EBB539B0FEA BCFFE906339A2D7C CDC60ED1A3147EA9
A70080497E3B6101 99FD8F3F35D5F567 1450DC1F7C057278 AC5CA7B8EB2782CF

Ciphertext and authentication tag

C : B6 5A D4 9D 08 12 87 73 03 76 A0 38 F1 32 B2 0C
33 E5 58 30 20 27 C0 D9 1C 03 0B 9C 7D DA 19 C7
51 1A 4F 02 5A FD 40 FD A2 95 C9 22 29 FA EA 13
A6 14 05 36 44 0B EB FC D3 62 72 5D 9E E9 0F 2C
2A AC 10 6B 5F 49 86 9B 9F E2 2C D9 F1 84 84 FC
70 C2 22 8C 1D A3 07 21 21 97 2C 2B D9 9A 29 2A
15 51 52 B1 67 72 3F F7 CD A5 BB A3 DA 09 E3 69
F2 7B FE 53 88 63 FF 56 18 40 01 28 8C C1 BE EC

T : 01 61 3B 7E 49 80 00 A7 67 F5 D5 35 3F 8F FD 99
78 72 05 7C 1F DC 50 14 CF 82 27 EB B8 A7 5C AC

52

B Datagrams

Many issues with encryption interoperability are due to ad hoc ways to represent and transport

cryptograms and the associated data. For example IVs are sometimes prepended to the

ciphertext, sometimes appended, or sent separately. We thus specify datagrams that can be

integrated in a protocol stack, encapsulating the ciphertext as a payload. Using a standardized

encoding simplifies the transmission of NORX cryptograms across different APIs, and reduces

the risk of insecure or suboptimal encodings. We specify two distinct types of datagrams,

depending on whether the NORX parameters are fixed or need to be signaled in the datagram

header.

B.1 Fixed Parameters

With fixed parameters shared by the parties (for example through the application using NORX),

there is no need to include the parameters in the header of the datagram
1
. The datagram for

fixed parameters thus only needs to contain N, A, C, Z, and T, as well as information to parse
those elements.

We encode the byte length of A and Z on 16 bits, allowing for headers and trailers of up to 64
KiB, a large enough value for most real applications. The byte length of the encrypted payload

is encoded on 32 bits for NORX32 and on 64 bits for NORX64, which translates to a maximum
payload size of 4 GiB and 16 EiB, respectively2. Similarly to frame check sequences in data
link protocols, the tag is added as a trailer of the datagram specified. The header, encrypted

payload, and trailer of the underlying protocol are viewed as the payload of the datagram. The

default tag length being a constant value of the NORX instance, it needs not be signalled.

Tables B.1 and B.2 show the fixed-parameters datagrams for NORX32 and NORX64. The length
of the datagram header is 44 bytes for NORX64 and 24 bytes for NORX32.

Note that the CAESAR API (as per the final call, see [3]) receives the nonce and the associated

data in two separate buffers, but the tag is included in the ciphertext buffer.

B.2 Variable Parameters

With variable parameters, the datagram needs to signal the values of w, l, and p. The header
is thus extended to encode those values, as specified in Tables B.3 and B.4. To minimize

bandwidth, w is encoded on one bit, supporting the two choices 32-bit (w = 0) and 64-bit
(w = 1), l on 7 bits (with the MSB fixed at 0, i.e. supporting up to 63 rounds), and p on 8 bits
(supporting parallelization degree up to 255). The datagram header is thus only 2 bytes longer
than the header for fixed parameters.

1
The header referred to is that of the datagram specified, not that of the data processed by the NORX instance.
2
Note that NORX is capable of (safely) processing much larger data sizes, those are just the maximum values

when our proposed datagrams are used.

53

Table B.1: NORX32 datagram for fixed parameters (offsets are in bytes)

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |A| Trailer byte length |Z|
20 Encrypted payload byte length |C|
24

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

Table B.2: NORX64 datagram for fixed parameters (offsets are in bytes)

Offset 0 1 2 3

0

Nonce N
. . .

. . .

28

32 Header byte length |A| Trailer byte length |Z|
36

Encrypted payload byte length |C|
40

44

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

54

Table B.3: NORX32 datagram for variable parameters (offsets are in bytes)

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |A| Trailer byte length |Z|
20 Encrypted payload byte length |C|
24 w(1)||l(7) p
28

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

Table B.4: NORX64 datagram for variable parameters (offsets are in bytes)

Offset 0 1 2 3

0

Nonce N
. . .

. . .

28

32 Header byte length |A| Trailer byte length |Z|
36

Encrypted payload byte length |C|
40

44 w(1)||l(7) p
48

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

55

C Addenda to Cryptanalysis

C.1 Diffusion Statistics for Inverse Round Functions

Table C.1 shows the diffusion statistics of the inverse round functions of NORX and ChaCha.

Table C.1: Diffusion statistics for inverse NORX and ChaCha round functions

Inverse NORX32 Inverse ChaCha (32-bit)
l min max avg med min max avg med

1 17 162 49.444 47 17 126 44.776 44
2 160 306 247.737 248 164 304 244.982 246
3 202 307 255.991 256 203 310 255.994 256
4 202 315 256.018 256 200 311 256.022 256

Inverse NORX64 Inverse ChaCha (64-bit)
l min max avg med min max avg med

1 17 203 51.346 49 17 142 46.129 45
2 262 568 433.742 435 194 543 382.667 383
3 440 593 511.995 512 440 591 511.964 512
4 435 585 512.011 512 433 596 511.991 512

C.2 Visualisation of Differentials for G1

Fig. C.1 depicts the relations of the output differences of G1 for input differences αi with one

active bit. The probability of an output difference in the tree can be computed by multiplying

the values on the edges of the path leading from the root to the particular node.

C.3 Impossible Differential Cryptanalysis

Fig. C.2 shows the bit representations of the output differences of the impossible differential

over 3.5 rounds of NORX64, which was presented in §7.2.4. The upper matrix illustrates the
difference in forward direction and the lower matrix the one in backward direction. Each row

corresponds to one of the 64-bit words of the state (denoted in little-endian), beginning with
s0 for the first row and ending with s15 for the last row. The conflict occurs in the 2nd bit of
the 14th word.

56

G1(α[i], 0, 0, 0)

(α[i], 0, 0, 0)

(0, 0, 0, α[i] ≫ r0)

(0, 0, α[i] ≫ r0, 0)

(0, α[i] ≫ (r0 + r1), 0, 0)

1

1

(0, 0, (α[i] ≫ r0) � 1, 0)

(0, ((α[i] ≫ r0) � 1) ≫ r1, 0, 0)

1

2−1

1

1

(α[i] � 1, 0, 0, 0)

(0, 0, 0, (α[i] � 1) ≫ r0)

(0, 0, (α[i] � 1) ≫ r0, 0)

(0, (α[i] � 1) ≫ (r0 + r1), 0, 0)

1

1

(0, 0, ((α[i] � 1) ≫ r0) � 1, 0)

(0, (((α[i] � 1) ≫ r0) � 1) ≫ r1, 0, 0)

1

2−1

1

2−1

G1(0, α[i], 0, 0)

(α[i], 0, 0, 0)

(0, 0, 0, α[i] ≫ r0)

(0, 0, α[i] ≫ r0, 0)

(0, α[i] ≫ (r0 + r1), 0, 0)

1

1

(0, 0, (α[i] ≫ r0) � 1, 0)

(0, ((α[i] ≫ r0) � 1) ≫ r1, 0, 0)

1

2−1

1

1

(0, α[i] ≫ r1, 0, 0)

1

(α[i] � 1, 0, 0, 0)

(0, 0, 0, (α[i] � 1) ≫ r0)

(0, 0, (α[i] � 1) ≫ r0, 0)

(0, (α[i] � 1) ≫ (r0 + r1), 0, 0)

1

1

(0, 0, ((α[i] � 1) ≫ r0) � 1, 0)

(0, (((α[i] � 1) ≫ r0) � 1) ≫ r1, 0, 0)

1

2−1

1

2−1

G1(0, 0, α[i], 0)

(0, 0, α[i], 0)

(0, α[i] ≫ r1, 0, 0)

1

1

(0, 0, α[i] � 1, 0)

(0, (α[i] � 1) ≫ r1, 0, 0)

1

2−1

G1(0, 0, 0, α[i])

(0, 0, 0, α[i] ≫ r0)

(0, 0, α[i] ≫ r0, 0)

(0, α[i] ≫ (r0 + r1), 0, 0)

1

1

(0, 0, (α[i] � 1) ≫ r0, 0)

(0, (α[i] � 1) ≫ (r0 + r1), 0, 0)

1

2−1

1

Figure C.1: Relations of the G1 output differences

57

???? ???? ???? ??1? ???? 0??? ???? ???? ???? ??10 0??? ??1? ???? 1??? ?00? ????

??10 0000 0??? ?10? ???? ???? ??10 0000 0000 0000 0000 0000 0000 0??? ??10 00??

??10 000? ??10 0000 ???? ?100 ???? ?100 0000 0000 00?? ??10 0000 0000 0000 00??

0000 0000 00?? ?10? ???? ???? ??10 0000 0000 ?100 0??? ?00? ???? ?1?? ??1? ???0

???? ???? ???? ?10? ???? ???? ???? ???? 0??? ???? ???? ???? ???? ???? ???? ????

???? ??10 0??? 100? ???? ???? ?10? ???? ???? ???? ???? ??1? ???? 1??? ???? ????

???? ???? ?000 0000 ???? ???? ???? ??10 0000 ???? ?0?? ???? ?00? ???? ???? 10??

???? ???? ?1?? 000? ???? 1??? ???? ???? ???? ???? ???? ??0? ???? 0??? ???? ????

???? ???? ???? ??00 ???? ???? ???? ???? ?1?? ???? ???? ???? ???? ???? ???? ????

???? ???1 0000 0000 0000 0000 0000 ???? ???? ???? ???? ???1 ???? ?1?? ???? ????

???? ???? ??10 0000 0??? ???? ???1 0??1 0000 0??? ??0? ???? ??00 ???? ???? ?100

???? ???? ??1? ?100 ???? ?0?? ???? ???? ???? ???? ??1? ???0 0??? ?1?? ???? ????

???? ???? ???? ??10 0??? ??0? ???? ???? ?00? ???? ???? ???? ???? ??0? ???? 0???

??10 0000 0000 0000 0000 0000 0000 0??? ??10 00?? ???1 0000 0??? ?10? ???? ????

???? ?100 0000 0000 00?? ???1 0000 00?1 0000 00?? ??00 000? ??00 0000 ???? ?100

??10 00?? ??10 ?100 0??? ?00? ???? ?1?? ??1? ???? ??10 ???0 00?? ?10? ???? ????

vs.

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? 1000 0000

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? 1000 0000

???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????

Figure C.2: Bit representation of a 3.5-round impossible differential for 64-bit F

58

D Nonce Misuse-Resistant NORX

This section gives a preview on a nonce misuse-resistant version of NORX that is based on

the misuse-resistant sponge (MRS) mode [36]. Instead of using MRS’ full-state absorption in

the data authentication part, NORX uses the usual rate-capacity layout though. This mode

is basically a MAC-Then-Encrypt construction where the generated authentication tag over

header, payload, and trailer is used as a nonce for the encryption function to encrypt the

payload. Note that two passes over the payload data are required. Since this design is only

a preview no parallel payload encryption is currently supported and therefore p = 1. The
high-level interface is given in Fig. D.1 and the new initialise function is depicted in Fig. D.2. All
other functions are unchanged and specified in Fig. 3.6.

Algorithm: AEADEnc(K, N, A, M, Z)
1. S← initialise(K, N, FE)
2. S← absorb(S, A, 01)
3. S← absorb(S, M, 02)
4. S← absorb(S, Z, 04)
5. S, T ← finalise(S, 08)
6. S← initialise(K, T, FF)
7. S, C ← encrypt(S, M, 02)
8. return C, T

Algorithm: AEADDec(K, N, A, C, Z, T)
1. S← initialise(K, T, FF)
2. S, M← decrypt(S, C, 02)
3. S← initialise(K, N, FE)
4. S← absorb(S, A, 01)
5. S← absorb(S, M, 02)
6. S← absorb(S, Z, 04)
7. S, T′ ← finalise(S, 08)
8. if T = T′ then return M else return ⊥ end

Figure D.1: High-level interface functions of the nonce misuse-resistant NORX mode

Algorithm: initialise(K, N, v)
1. k0 ‖ k1 ‖ k2 ‖ k3 ← K, s.t. |ki| = w
2. n0 ‖ n1 ‖ n2 ‖ n3 ← N, s.t. |ni| = w
3. S← (n0, n1, n2, n3, k0, k1, k2, k3, u8, u9, u10, u11, u12, u13, u14, u15)
4. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (l, p, t, v)
5. S← Fl(S)
6. (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (k0, k1, k2, k3)
7. return S

Figure D.2: Initialisation of the nonce-misuse-resistant NORX mode

59

	Changelog
	Introduction
	Specification
	Parameters and Interface
	Instances
	Layout Overview
	The Permutation F l
	The Mode
	High-level Structure
	Low-level Structure

	Security Goals
	Features
	List of Characteristics
	Recommended Parameter Sets
	Performance
	Generalities
	Software
	Hardware

	Design Rationale
	The Parallel Duplex Construction
	The G Function
	The F Function
	Number of Rounds
	Selection of Constants
	Initialisation
	Domain Separation
	Rotation Offsets

	The Padding Rule
	Absence of Backdoors

	Security Analysis
	Security Bounds for the Mode of Operation
	Differential Cryptanalysis
	Notation
	Differential Properties of G
	Simple Differentials
	Impossible Differentials

	Algebraic Cryptanalysis
	Other Attacks
	Fixed Points
	Slide Attacks
	Rotational Cryptanalysis

	Intellectual Property
	Consent
	Acknowledgements
	Bibliography
	Test Vectors
	Traces for F
	Full AEAD Computations

	Datagrams
	Fixed Parameters
	Variable Parameters

	Addenda to Cryptanalysis
	Diffusion Statistics for Inverse Round Functions
	Visualisation of Differentials for G 1
	Impossible Differential Cryptanalysis

	Nonce Misuse-Resistant NORX

